EEWORLDEEWORLDEEWORLD

Part Number

Search

MO2018EE5-CLH-28N0-0070485001E

Description
LVCMOS Output Clock Oscillator, 70.485001MHz Nom, SOT23-5
CategoryPassive components    oscillator   
File Size884KB,12 Pages
ManufacturerDaishinku Corp.
Websitehttp://www.kds.info/
Environmental Compliance
Download Datasheet Parametric View All

MO2018EE5-CLH-28N0-0070485001E Overview

LVCMOS Output Clock Oscillator, 70.485001MHz Nom, SOT23-5

MO2018EE5-CLH-28N0-0070485001E Parametric

Parameter NameAttribute value
Is it Rohs certified?conform to
Objectid7216073409
package instructionSOT23-5
Reach Compliance Codeunknown
Other featuresTR
maximum descent time2 ns
Frequency Adjustment - MechanicalNO
frequency stability25%
Installation featuresSURFACE MOUNT
Nominal operating frequency70.485001 MHz
Maximum operating temperature105 °C
Minimum operating temperature-40 °C
Oscillator typeLVCMOS
Output load15 pF
physical size3.05mm x 1.75mm x 1.45mm
longest rise time2 ns
Maximum supply voltage3.08 V
Minimum supply voltage2.52 V
Nominal supply voltage2.8 V
surface mountYES
maximum symmetry55/45 %
MO2018
High Temp, Single-Chip, One-output Clock Generator
Features
Applications
Frequencies between 1 MHz and 110 MHz accurate to 6 decimal
places
Operating temperature from -40°C to +125°C. For -55°C option,
refer to MO2020 and MO2021
Supply voltage of +1.8V or +2.5V to +3.3V
Excellent total frequency stability as low as ±20ppm
Low power consumption of +3.5mA typical at 20 MHz, +1.8V
LVCMOS/LVTTL compatible output
5-pin SOT23-5 package: 2.9mm x 2.8mm
RoHS and REACH compliant, Pb-free, Halogen-free and
Antimony-free
For AEC-Q100 clock generators, refer to MO2024 and MO2025
Industrial, medical, automotive, avionics and other high temper-
ature applications
Industrial sensors, PLC, motor servo, outdoor networking
equipment, medical video cam, asset tracking systems, etc.
Electrical Specifications
Table 1. Electrical Characteristics
All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise stated. Typical values are
at +25°C and nominal supply voltage.
Parameters
Symbol
Min.
Typ.
Max.
Unit
Condition
Frequency Range
Output Frequency Range
f
1.0
110
MHz
Refer to
Table 14
for the exact list of supported frequencies
list of supported frequencies
Frequency Stability and Aging
-20
Frequency Stability
F_stab
-25
-30
-50
-40
-40
+1.62
+2.25
Supply Voltage
Vdd
+2.52
+2.7
+2.97
+2.25
Current Consumption
Idd
OE Disable Current
I_od
Standby Current
I_std
Duty Cycle
Rise/Fall Time
DC
Tr, Tf
45
Output High Voltage
VOH
90%
+1.8
+2.5
+2.8
+3.0
+3.3
+3.8
+3.6
+3.5
+2.6
+1.4
+0.6
1.0
1.3
1.0
+20
+25
+30
+50
+105
+125
+1.98
+2.75
+3.08
+3.3
+3.63
+3.63
+4.7
+4.5
+4.5
+4.5
+4.3
+8.5
+5.5
+4.0
55
2.0
2.5
3.0
ppm
ppm
ppm
ppm
°C
°C
V
V
V
V
V
V
mA
mA
mA
mA
mA
μA
μA
μA
%
ns
ns
ns
Vdd
No load condition, f = 20 MHz, Vdd = +2.8V, +3.0V or +3.3V
No load condition, f = 20 MHz, Vdd = +2.5V
No load condition, f = 20 MHz, Vdd = +1.8V
Vdd = +2.5V to +3.3V, OE = Low, Output in high Z state.
Vdd = +1.8V, OE = Low, Output in high Z state.
Vdd = +2.8V to +3.3V,
ST
= Low, Output is weakly pulled down
Vdd = +2.5V,
ST
= Low, Output is weakly pulled down
Vdd = +1.8V,
ST
= Low, Output is weakly pulled down
All Vdds
Vdd = +2.5V, +2.8V, +3.0V or +3.3V, 20% - 80%
Vdd =+1.8V, 20% - 80%
Vdd = +2.25V - +3.63V, 20% - 80%
IOH = -4.0 mA (Vdd = +3.0V or +3.3V)
IOH = -3.0 mA (Vdd = +2.8V or +2.5V)
IOH = -2.0 mA (Vdd = +1.8V)
IOL = +4.0 mA (Vdd = +3.0V or +3.3V)
IOL = +3.0 mA (Vdd = +2.8V or +2.5V)
IOL = +2.0 mA (Vdd = +1.8V)
Extended Industrial
Automotive
Inclusive of Initial tolerance at +25°C, 1st year aging at +25°C,
and variations over operating temperature, rated power supply
voltage and load (15 pF ± 10%).
Operating Temperature Range
Operating Temperature Range
(ambient)
T_use
Supply Voltage and Current Consumption
LVCMOS Output Characteristics
Output Low Voltage
VOL
10%
Vdd
Daishinku Corp.
Rev. 1.01
1389 Shinzaike, Hiraoka-cho, Kakogawa, Hyogo 675-0194 Japan
+81-79-426-3211
www.kds.info
Revised September 29, 2015
PWM input capture, problem of selecting trigger source
I use CH1, CH2 and CH3 of TIM2 as input pins respectively. The trigger source selections for CH1 and CH2 are TIM_TS_TI1FP1 and TIM_TS_TI2FP2 respectively. But when using CH3, why is there no TIM_TS_TI...
引线太短啦 stm32/stm8
4.2V to 50V
4.2V to 50V...
QWE4562009 Power technology
Qorvo CEO Bob Bruggeworth Elected Chairman of the Semiconductor Industry Association
November 24, 2020 - Qorvo, Inc. (Nasdaq: QRVO), a leading provider of innovative RF solutions for mobile, infrastructure and aerospace and defense applications, today announced that the Semiconductor ...
兰博 RF/Wirelessly
Introduction to RF Gain Blocks for Radio Range and Reliability
Radio frequency (RF) PCB design has many uncertainties in the currently published theories and is often described as a "black art". Generally speaking, for circuits below the microwave frequency band ...
灞波儿奔 RF/Wirelessly
How to choose pliers, terminals, wires, and heat shrink tubing for DuPont cables?
I bought dozens of silicone binding wires before, which are very useful, but after using them for a while, they are not enough. Some netizens suggested that I can use pliers to crimp the wires myself....
lugl4313820 Talking about work
Talk about the "obstacles" on the road to power supply upgrade
From learning about power supplies to designing a power supply, from being a power supply novice to a technical expert...how many obstacles have you overcome along the way to becoming a power supply e...
okhxyyo Power technology

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号