STF15N95K5, STP15N95K5,
STW15N95K5
N-channel 950 V, 0.41
Ω
typ., 12 A SuperMESH™ 5
Power MOSFETs in TO-220FP, TO-220 and TO-247 packages
Datasheet
-
production data
Features
Order codes
STF15N95K5
3
2
1
V
DS
R
DS(on)max
0.5
Ω
I
D
P
TOT
30 W
STP15N95K5
STW15N95K5
950 V
12 A
170 W
TO-220FP
TAB
•
TO-220 worldwide best R
DS(on)
•
Worldwide best FOM (figure of merit)
3
1
2
•
Ultra low gate charge
3
2
1
TO-220
•
100% avalanche tested
•
Zener-protected
TO-247
Figure 1. Internal schematic diagram
D(2,TAB)
Applications
•
Switching applications
Description
G(1)
S(3)
AM01476v1
These devices are N-channel Power MOSFETs
developed using SuperMESH™ 5 technology.
This revolutionary, avalanche-rugged, high
voltage Power MOSFET technology is based on
an innovative proprietary vertical structure. The
result is a drastic reduction in on-resistance and
ultra low gate charge for applications which
require superior power density and high
efficiency.
Table 1. Device summary
Order codes
STF15N95K5
STP15N95K5
STW15N95K5
Marking
15N95K5
15N95K5
15N95K5
Package
TO-220FP
TO-220
TO-247
Tube
Packaging
February 2014
This is information on a product in full production.
DocID025280 Rev 2
1/18
www.st.com
18
Contents
STF15N95K5, STP15N95K5, STW15N95K5
Contents
1
2
Electrical ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1
Electrical characteristics (curves) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
4
5
Test circuits
.............................................. 9
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2/18
DocID025280 Rev 2
STF15N95K5, STP15N95K5, STW15N95K5
Electrical ratings
1
Electrical ratings
Table 2. Absolute maximum ratings
Value
Symbol
Parameter
TO-220
TO-247
V
GS
I
D
I
D
I
DM (2)
P
TOT
I
AR
Gate- source voltage
Drain current (continuous) at T
C
= 25 °C
Drain current (continuous) at T
C
= 100 °C
Drain current (pulsed)
Total dissipation at T
C
= 25 °C
Max current during repetitive or single
pulse avalanche
(pulse width limited by T
jmax
)
Single pulse avalanche energy
(starting T
J
= 25 °C, I
D
=I
AS
, V
DD
= 50 V)
Gate-source human body model
(R= 1,5 kΩ, C = 100 pF)
Insulation withstand voltage (RMS) from
all three leads to external heat sink
(t=1 s;T
C
=25 °C)
Peak diode recovery voltage slope
MOSFET dv/dt ruggedness
Operating junction temperature
Storage temperature
4.5
50
-55 to 150
12
7.6
48
170
± 30
12
(1)
7.6
(1)
48
(1)
30
Unit
TO-220FP
V
A
A
A
W
4
A
E
AS
124
mJ
ESD
2
kV
V
ISO
dv/dt
(3)
dv/dt
(4)
T
j
T
stg
2500
V
V/ns
V/ns
°C
1. Limited by maximum junction temperature.
2. Pulse width limited by safe operating area.
3. I
SD
≤
12, di/dt
≤
100 A/μs, V
DS(peak)
≤
V
(BR)DSS
4. V
DS
≤
760 V
Table 3. Thermal data
Value
Symbol
Parameter
TO-220
R
thj-case
R
thj-amb
Thermal resistance junction-case max
Thermal resistance junction-amb max
62.5
TO-247
TO-220FP
4.2
50
62.5
°C/W
°C/W
Unit
0.74
DocID025280 Rev 2
3/18
Electrical characteristics
STF15N95K5, STP15N95K5, STW15N95K5
2
Electrical characteristics
(T
CASE
= 25 °C unless otherwise specified)
Table 4. On/off states
Symbol
V
(BR)DSS
Parameter
Drain-source breakdown
voltage
Zero gate voltage drain
current (V
GS
= 0)
Gate body leakage current
(V
DS
= 0)
Gate threshold voltage
Static drain-source
on-resistance
Test conditions
I
D
= 1 mA, V
GS
= 0
V
DS
= 950 V,
V
DS
= 950 V, Tc=125 °C
V
GS
= ± 20 V
V
DS
= V
GS
, I
D
= 100
μA
V
GS
= 10 V, I
D
= 6 A
3
4
0.41
Min.
950
1
50
±10
5
0.50
Typ.
Max.
Unit
V
μA
μA
μA
V
Ω
I
DSS
I
GSS
V
GS(th)
R
DS(on)
Table 5. Dynamic
Symbol
C
iss
C
oss
C
rss
C
o(tr)(1)
C
o(er)(2)
R
G
Q
g
Q
gs
Q
gd
Parameter
Input capacitance
Output capacitance
V
DS
=100 V, f=1 MHz, V
GS
=0
Reverse transfer
capacitance
Equivalent capacitance time
related
V
GS
= 0, V
DS
= 0 to 760 V
Equivalent capacitance
energy related
Intrinsic gate resistance
Total gate charge
Gate-source charge
Gate-drain charge
f = 1 MHz open drain
V
DD
= 760 V, I
D
= 12 A
V
GS
=10 V
(see
Figure 20)
-
-
-
-
-
38
6
30
5
22
-
-
-
-
-
pF
Ω
nC
nC
nC
-
1
pF
Test conditions
Min.
-
-
Typ.
855
65
Max.
-
Unit
pF
pF
-
104
-
pF
1. Time related is defined as a constant equivalent capacitance giving the same charging time as C
oss
when
V
DS
increases from 0 to 80% V
DSS
2. energy related is defined as a constant equivalent capacitance giving the same stored energy as C
oss
when V
DS
increases from 0 to 80% V
DSS
4/18
DocID025280 Rev 2
STF15N95K5, STP15N95K5, STW15N95K5
Electrical characteristics
Table 6. Switching times
Symbol
t
d(v)
t
r(v)
t
f(i)
t
c(off)
Parameter
Voltage delay time
Voltage rise time
Current fall time
Crossing time
V
DD
= 475 V, I
D
= 6 A,
R
G
=4.7
Ω,
V
GS
=10 V
(see
Figure 22)
Test conditions
Min.
-
-
-
-
Typ.
23
20
62
11
Max.
-
-
-
-
Unit
ns
ns
ns
ns
Table 7. Source drain diode
Symbol
I
SD
I
SDM
V
SD(1)
t
rr
Q
rr
I
RRM
t
rr
Q
rr
I
RRM
1.
Parameter
Source-drain current
Source-drain current (pulsed)
Forward on voltage
Reverse recovery time
Reverse recovery charge
Reverse recovery current
Reverse recovery time
Reverse recovery charge
Reverse recovery current
Test conditions
Min.
-
Typ.
Max.
12
48
1.5
Unit
A
A
V
ns
μC
A
ns
μC
A
I
SD
= 12 A, V
GS
=0
I
SD
= 12 A, V
DD
= 60 V
di/dt = 100 A/μs,
(see
Figure 21)
I
SD
= 12 A,V
DD
= 60 V
di/dt=100 A/μs,
Tj=150 °C(see
Figure 21)
-
-
-
-
-
-
-
444
7
32
630
9.2
29
Pulsed: pulse duration = 300μs, duty cycle 1.5%
Table 8. Gate-source Zener diode
Symbol
Parameter
Test conditions
Min.
30
Typ.
-
Max.
-
Unit
V
V
(BR)GSO
Gate-source breakdown voltage I
GS
= ± 1 mA, I
D
= 0
The built-in back-to-back Zener diodes have specifically been designed to enhance not only
the device’s ESD capability, but also to make them safely absorb possible voltage transients
that may occasionally be applied from gate to source. In this respect the Zener voltage is
appropriate to achieve an efficient and cost-effective intervention to protect the device’s
integrity. These integrated Zener diodes thus avoid the usage of external components.
DocID025280 Rev 2
5/18