STPS2150
Power Schottky rectifier
Features
■
■
■
■
■
Negligible switching losses
Low forward voltage drop for higher efficiency
and extented battery life
Low thermal resistance
Surface mount miniature package
Avalanche capability specified
SMA
(JEDEC DO-214AC)
STPS2150A
DO-15
STPS2150
K
A
A
K
Description
150 V power Schottky rectifiers are suited for
switch mode power supplies on up to 24 V rails
and high frequency converters.
Packaged in SMA, SMA low profile, and axial, this
device is intended for use in consumer and
computer applications like TV, STB, PC and DVD
where low drop forward voltage is required to
reduce power dissipation.
A
K
SMAflat
(JEDEC DO-221AC)
STPS2150AF
Table 1.
Device summary
I
F(AV)
V
RRM
T
j
(max)
V
F
(max)
2A
150 V
175 °C
0.67 V
September 2008
Rev 6
1/9
www.st.com
9
Characteristics
STPS2150
1
Table 2.
Symbol
V
RRM
I
F(AV)
I
FSM
P
ARM
T
stg
T
j
1.
dPtot
---------------
dTj
Characteristics
Absolute Ratings (limiting values)
Parameter
Repetitive peak reverse voltage
Average forward current
Surge non repetitive forward
current
Repetitive peak avalanche power
Storage temperature range
Maximum operating junction temperature
(1)
1
<
--------------------------
condition to avoid thermal runaway for a diode on its own heatsink
Rth
(
j
–
a
)
Value
150
T
L
= 145 °C
δ
= 0.5
T
L
= 130 °C
δ
= 0.5
t
p
= 10 ms sinusoidal
tp = 1 µs Tj = 25 °C
Unit
V
A
SMA, SMAflat
DO-15
SMA, SMAflat
DO-15
2
75
150
2400
-65 to + 175
175
A
W
°C
°C
Table 3.
Symbol
R
th(j-l)
Thermal resistance
Parameter
SMA, SMAflat
Junction to lead
Lead length = 10 mm
DO-15
30
Value
20
°C/W
Unit
Table 4.
Symbol
I
R (1)
Static electrical characteristics
Parameter
Reverse leakage current
Tests conditions
T
j
= 25 °C
T
j
= 125 °C
T
j
= 25 °C
V
R
= V
RRM
Min.
Typ
0.5
0.5
0.78
I
F
= 2 A
0.62
0.86
I
F
= 4 A
0.70
Max.
1.5
1.5
0.82
0.67
V
0.89
0.75
Unit
µA
mA
V
F (2)
Forward voltage drop
T
j
= 125 °C
T
j
= 25 °C
T
j
= 125 °C
1. t
p
= 5 ms,
δ
< 2%
2. t
p
= 380 µs,
δ
< 2%
To evaluate the conduction losses use the following equation: P = 0.59 x I
F(AV)
+ 0.04 I
F
2
(RMS)
2/9
STPS2150
Characteristics
Figure 1.
Average forward power
dissipation versus average
forward current
δ
= 0.1
δ
= 0.05
δ
= 0.2
δ
= 0.5
Figure 2.
Average forward current versus
ambient temperature (δ = 0.5)
P
F(AV)
(W)
1.6
1.4
1.2
I
F(AV)
(A)
2.2
2.0
1.8
δ
=1
R
th(j-a)
=R
th(j-l)
SMA / SMAflat
DO-15
R
th(j-a)
=100°C/W
1.6
1.4
1.2
1.0
0.8
1.0
0.6
0.4
0.2
0.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
0.8
T
0.6
0.4
T
R
th(j-a)
=200°C/W
I
F(AV)
(A)
δ
=tp/T
1.8
2.0
tp
2.2
0.2
0.0
0
δ
=tp/T
25
tp
T
amb
(°C)
50
75
100
125
150
175
Figure 3.
Normalized avalanche power
derating versus pulse duration
Figure 4.
Normalized avalanche power
derating versus junction
temperature
P
ARM
(t
p
)
P
ARM
(1µs)
1
P
ARM
(T
j
)
P
ARM
(25°C)
1.2
1
0.1
0.8
0.6
0.4
0.2
0.01
0.001
0.01
0.1
1
t
p
(µs)
10
100
1000
T
j
(°C)
0
25
50
75
100
125
150
Figure 5.
Non repetitive surge peak forward
current versus overload duration
(maximum values, DO-15)
DO-15
Figure 6.
Non repetitive surge peak forward
current versus overload duration
(maximum values, SMA)
SMA
I
M
(A)
10
9
8
7
6
5
4
3
2
1
0
1.E-03
1.E-02
1.E-01
1.E+00
I
M
t
δ
=0.5
I
M
(A)
10
9
8
T
a
=25°C
7
6
T
a
=25°C
T
a
=75°C
5
4
T
a
=75°C
T
a
=125°C
3
T
a
=125°C
2
I
M
t
t(s)
1
0
1.E-03
δ
=0.5
t(s)
1.E-02
1.E-01
1.E+00
3/9
Characteristics
STPS2150
Figure 7.
Non repetitive surge peak forward
current versus overload duration
(maximum values, SMAflat)
SMAflat
Figure 8.
Relative variation of thermal
impedance junction to ambient
versus pulse duration (DO-15)
I
M
(A)
6
1.0
0.9
Z
th(j-a)
/R
th(j-a)
DO-15
5
0.8
0.7
T
a
=25°C
4
0.6
3
T
a
=75°C
0.5
0.4
2
T
a
=125°C
0.3
0.2
1
I
M
t
δ
=0.5
t(s)
1.E-02
1.E-01
1.E+00
0.1
0.0
Single pulse
t
p
(s)
1.E+00
1.E+01
1.E+02
1.E+03
0
1.E-03
1.E-01
Figure 9.
Relative variation of thermal
impedance junction to ambient
versus pulse duration (SMA)
Figure 10. Relative variation of thermal
impedance junction to ambient
versus pulse duration (SMAflat)
Z
th(j-a)
/R
th(j-a)
1.0
SMAflat
Z
th(j-a)
/R
th(j-a)
1.0
SMA
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
1.E-02
1.E-01
1.E+00
1.E+01
1.E+02
1.E+03
Single pulse
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
t
p
(s)
0.1
0.0
Single pulse
t
p
(s)
1.E-01
1.E+00
1.E+01
1.E+02
1.E+03
1.E-02
Figure 11. Reverse leakage current versus
reverse voltage applied
(typical values)
I
R
(µA)
1.E+04
T
j
=150°C
Figure 12. Junction capacitance versus
reverse voltage applied
(typical values)
C(pF)
1000
F=1MHz
V
OSC
=30mV
RMS
T
j
=25°C
1.E+03
T
j
=125°C
1.E+02
T
j
=100°C
1.E+01
T
j
=75°C
T
j
=50°C
100
1.E+00
1.E-01
T
j
=25°C
V
R
(V)
1.E-02
0
25
50
75
100
125
150
10
1
10
V
R
(V)
100
1000
4/9
STPS2150
Characteristics
Figure 13. Forward voltage drop versus
forward current (maximum values,
low level)
I
FM
(A)
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
T
j
=125°C
(Typical values)
T
j
=25°C
(Maximum values)
T
j
=125°C
(Maximum values)
Figure 14. Forward voltage drop versus
forward current (maximum values,
high level)
I
FM
(A)
100
T
j
=125°C
(maximum values)
T
j
=125°C
(typical values)
T
j
=25°C
(maximum values)
10
V
FM
(V)
1
0.0
0.2
0.4
0.6
0.8
V
FM
(V)
1.0
1.2
1.4
1.6
1.8
Figure 15. Thermal resistance junction to
ambient versus copper surface
under each lead - epoxy printed
circuit board FR4, copper
thickness = 35 µm (SMA)
R
th(j-a)
(°C/W)
140
SMA
Figure 16. Thermal resistance junction to
ambient versus copper surface
under each lead - epoxy printed
circuit board FR4, copper
thickness = 35 µm (SMAflat)
R
th(j-a)
(°C/W)
200
SMAflat
180
160
120
100
80
60
40
20
0
0
1
2
3
4
5
140
120
100
80
60
40
S
Cu
(cm²)
20
0
S
Cu
(cm²)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Figure 17. Thermal resistance versus lead length (DO-15)
R
th
(°C/W)
120
R
th(j-a)
100
80
60
R
th(j-I)
40
20
L
leads
(mm)
0
5
10
15
20
25
5/9