STPS3L60
Power Schottky rectifier
Features
■
■
■
Negligible switching losses
Low forward voltage drop
Avalanche capability specified
K
A
K
A
Description
Axial and surface mount power Schottky rectifier
suited for switch mode power supplies and high
frequency dc to dc converters. Packaged in
DO-201AD, DO-15, SMB and SMBflat, this device
is intended for use in low voltage, high frequency
inverters and small battery chargers and for
applications where there are space constraints,
for example telecom battery charger.
DO-201AD
STPS3L60
DO-15
STPS3L60Q
A
A
K
K
SMB
STPS3L60U
SMBflat
STPS3L60UF
Table 1.
Device summary
I
F(AV)
V
RRM
T
j (max)
V
F (max)
3A
60 V
150 °C
0.61 V
June 2009
Doc ID 7505 Rev 6
1/11
www.st.com
11
Characteristics
STPS3L60
1
Characteristics
Table 2.
Symbol
V
RRM
I
F(RMS)
Absolute ratings
(1)
Parameter
Repetitive peak reverse voltage
RMS forward current
T
L
= 105 °C
δ
= 0.5
(DO-201AD, SMB)
Value
60
10
Unit
V
A
I
F(AV)
Average forward current
T
L
= 72 °C
δ
= 0.5
(DO-15)
T
L
= 127 °C
δ
= 0.5
(SMBflat)
3
A
I
FSM
P
ARM
T
stg
T
j
dV/dt
dPtot
---------------
dTj
Surge non repetitive forward current
Repetitive peak avalanche power
Storage temperature range
t
p
= 10 ms Sinusoidal
t
p
= 1 µs T
j
= 25 °C
100
2000
-65 to + 150
150
10000
A
W
°C
°C
V/µs
Maximum operating junction temperature
(2)
Critical rate of rise reverse voltage
1
<
--------------------------
condition to avoid thermal runaway for a diode on its own heatsink
Rth
(
j
–
a
)
1. limiting values, per diode
2.
Table 3.
Symbol
Thermal resistance
Parameter
SMBflat
SMB
Value
10
20
20
35
°C/W
Unit
R
th (j-l)
Junction to leads
DO-201AD
Lead length = 10 mm
DO-15
2/11
Doc ID 7505 Rev 6
STPS3L60
Table 4.
Symbol
Characteristics
Static electrical characteristics
Parameter
Tests Conditions
T
j
= 25 °C
I
R (1)
Reverse leakage current
T
j
= 100 °C
T
j
= 125 °C
T
j
= 25 °C
T
j
= 100 °C
V
F (1)
Forward voltage drop
T
j
= 125 °C
T
j
= 25 °C
T
j
= 100 °C
T
j
= 125 °C
1. Pulse test :t
p
= 380 µs,
δ
< 2%
Min.
-
Typ.
-
4
14
-
0.53
0.51
-
0.62
0.6
Max.
150
15
30
0.62
0.61
0.59
Unit
µA
mA
V
R
= V
RRM
-
-
-
I
F
= 3 A
-
-
-
V
0.79
0.71
0.69
I
F
= 6 A
-
-
To evaluate the conduction losses use the following equation :
P = 0.44 x I
F(AV)
+ 0.05 x I
F2(RMS)
Figure 1.
Average forward power dissipation Figure 2.
versus average forward current
I
F(AV)
(A)
R
th(j-a)
=R
th(j-I)
Average forward current versus
ambient temperature (
δ
= 0.5)
(DO-201AD, SMB)
P
F(AV)
(W)
2.50
2.25
2.00
1.75
1.50
1.25
δ
= 0.05
δ
= 0.1
δ
= 0.2
3.5
δ
= 0.5
3.0
δ
=1
2.5
2.0
R
th(j-a)
=80°C/W
1.5
1.00
0.75
0.50
0.25
0.00
0.0
0.5
1.0
1.5
2.0
2.5
3.0
T
1.0
0.5
I
F(AV)
(A)
δ
=tp/T
3.5
tp
T
amb
(°C)
0.0
4.0
0
25
50
75
100
125
150
Doc ID 7505 Rev 6
3/11
Characteristics
STPS3L60
Figure 3.
Average forward current versus
ambient temperature (
δ
= 0.5)
(DO-15)
Figure 4.
Average forward current versus
ambient temperature (
δ
= 0.5)
(SMBflat)
I
F(AV)
(A)
3.5
Rth(j-a)=Rth(j-l)
I
F(AV)
(A)
3.5
Rth(j-a)=Rth(j-l)
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0
25
50
75
100
125
150
3.0
2.5
2.0
1.5
Rth(j-a)=100°C/W
Rth(j-a)=100°C/W
1.0
0.5
T
amb
(°C)
T
amb
(°C)
0.0
0
25
50
75
100
125
150
Figure 5.
Normalized avalanche power
derating versus pulse duration
Figure 6.
Normalized avalanche power
derating versus junction
temperature
P
ARM
(tp)
P
ARM
(1 µs)
1
1.2
1
0.1
0.8
0.6
0.4
0.2
0.001
0.01
0.1
1
P
ARM
(Tj)
P
ARM
(25 °C)
0.01
t
p
(µs)
10
100
1000
T
j
(°C)
0
25
50
75
100
125
150
Figure 7.
Non repetitive surge peak forward
current versus overload duration
(maximum values) (DO-201AD)
Figure 8.
Non repetitive surge peak forward
current versus overload duration
(maximum values) (DO-15)
I
M
(A)
12
I
M
(A)
11
10
10
9
8
8
Ta=25 °C
7
6
Ta=25 °C
6
Ta=50 °C
5
Ta=50 °C
4
Ta=100 °C
4
3
Ta=100 °C
2
I
M
t
2
δ
=0.5
I
M
t
t(s)
1.E-02
1.E-01
1.E+00
1
0
1.E-03
t(s)
1.E-02
1.E-01
1.E+00
δ
=0.5
0
1.E-03
4/11
Doc ID 7505 Rev 6
STPS3L60
Characteristics
Figure 9.
Non repetitive surge peak forward
current versus overload duration
(maximum values) (SMB)
Figure 10. Non repetitive surge peak forward
current versus overload duration
(maximum values) (SMBflat)
I
M
(A)
40
35
30
25
20
T
L
=25°C
I
M
(A)
11
10
9
8
7
Ta=25 °C
6
5
Ta=50 °C
4
3
2
1
0
1.E-03
Ta=100 °C
I
M
t
15
10
I
M
T
L
=50°C
T
L
=100°C
t
δ
=0.5
t(s)
1.E-02
1.E-01
1.E+00
5
0
1.E-03
δ
=0.5
t(s)
1.E-02
1.E-01
1.E+00
Figure 11. Relative variation of thermal
impedance junction to ambient
versus pulse duration (DO-201AD)
Z
th(j-a)
/R
th(j-a)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
1.E-01
1.E+00
1.E+01
1.E+02
1.E+03
Single pulse
Figure 12. Relative variation of thermal
impedance junction to ambient
versus pulse duration (DO-15)
Z
th(j-a)
/R
th(j-a)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
t
p
(s)
0.1
0.0
Single pulse
t
p
(s)
1.E+00
1.E+01
1.E+02
1.E+03
1.E-01
Figure 13. Relative variation of thermal
impedance junction to ambient
versus pulse duration (SMB)
Z
th(j-a)
/R
th(j-a)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
1.E-01
1.E+00
1.E+01
1.E+02
1.E+03
Single pulse
Figure 14. Relative variation of thermal
impedance junction to lead
versus pulse duration (SMBflat)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
Single pulse
Z
th(j-l)
/R
th(j-l)
t
p
(s)
0.1
0.0
1.E-03
1.E-02
t
p
(s)
1.E-01
1.E+00
Doc ID 7505 Rev 6
5/11