EEWORLDEEWORLDEEWORLD

Part Number

Search

0603Y0100102KXR

Description
CAP CER 1000PF 10V X7R 0603
CategoryPassive components   
File Size554KB,6 Pages
ManufacturerKnowles
Websitehttp://www.knowles.com
Environmental Compliance
Download Datasheet Parametric View All

0603Y0100102KXR Overview

CAP CER 1000PF 10V X7R 0603

0603Y0100102KXR Parametric

Parameter NameAttribute value
capacitance1000pF
Tolerance±10%
Voltage - Rated10V
Temperature CoefficientX7R(2R1)
Operating temperature-55°C ~ 125°C
characteristicSoft terminal, high temperature
grade-
applicationHigh reliability, board flexibility sensitive
failure rate-
Installation typeSurface mount, MLCC
Package/casing0603 (1608 Metric)
size/dimensions0.063" long x 0.032" wide (1.60mm x 0.80mm)
Height - Installation (maximum)-
Thickness (maximum)0.032"(0.80mm)
lead spacing-
Lead form-
MLCC
Standard MLCC Ranges
Surface Mount MLC Capacitors
Electrical Details
Capacitance Range
Temperature Coefficient of
Capacitance (TCC)
C0G/NP0
X7R
C0G/NP0
X7R
Insulation Resistance (IR)
Dielectric Withstand Voltage (DWV)
C0G/NP0
X7R
0.47pF to 22µF
0 ± 30ppm/˚C
±15% from -55˚C to +125˚C
Cr > 50pF
≤0.0015
Cr
50pF = 0.0015(15÷Cr+0.7)
0.025
100G or 1000secs (whichever is the less)
Voltage applied for 5 ±1 seconds, 50mA
charging current maximum
Zero
<2% per time decade
A range of dc rated multi-layer chip capacitors from
0.47pF to 22µF and in case sizes 0603 to 8060 in
C0G/NP0 and X7R dielectrics. Suitable for all general
purpose and high reliability applications where package
size and reliability are important. All are manufactured
using Syfer’s unique wet process and incorporate
precious metal electrodes.
Dissipation Factor
Ageing Rate
Range Dimensions – Standard MLCC Ranges
Length
(L1)
mm/inches
1.6 ± 0.2
0.063 ± 0.008
2.0 ± 0.3
0.08 ± 0.012
3.2 ± 0.3
0.126 ± 0.012
3.2 ± 0.3
0.126 ± 0.012
4.5 ± 0.35
0.18 ± 0.014
4.5 ± 0.35
0.18 ± 0.014
4.5 ± 0.35
0.18 ± 0.014
5.7 ± 0.4
0.225 ± 0.016
5.7 ± 0.4
0.225 ± 0.016
9.2 ± 0.5
0.36 ± 0.02
14.0 ± 0.5
0.55 ± 0.02
20.3 ± 0.5
0.8 ± 0.02
Width
(W)
mm/inches
0.8 ± 0.2
0.031 ± 0.008
1.25 ± 0.2
0.05 ± 0.008
1.6 ± 0.2
0.063 ± 0.008
2.5 ± 0.3
0.1 ± 0.012
2.0 ± 0.3
0.08 ± 0.012
3.2 ± 0.3
0.126 ± 0.012
6.30 ± 0.4
0.25 ± 0.016
5.0 ± 0.4
0.197 ± 0.016
6.3 ± 0.4
0.25 ± 0.016
10.16 ± 0.5
0.4 ± 0.02
12.7 ± 0.5
0.5 ± 0.02
15.24 ± 0.5
0.6 ± 0.02
Max. Thickness
(T)
mm/inches
0.8
0.013
1.3
0.051
1.6
0.063
2.0
0.08
2.0
0.08
2.5
0.1
2.5
0.1
4.2
0.16
4.2
0.16
2.5
0.1
4.2
0.16
2.5
0.1
Termination Band
(L2)
mm/inches
min
0.10
0.004
0.13
0.005
0.25
0.01
0.25
0.01
0.25
0.01
0.25
0.01
0.25
0.01
0.25
0.01
0.25
0.01
0.5
0.02
0.5
0.02
0.5
0.02
max
0.40
0.015
0.75
0.03
0.75
0.03
0.75
0.03
1.0
0.04
1.0
0.04
1.0
0.04
1.0
0.04
1.0
0.04
1.5
0.06
1.5
0.06
1.5
0.06
Size
0603
0805
1206
1210
1808
1812
1825
2220
2225
3640
5550
8060
Custom chip sizes not included in the table, but larger than 2225, can be considered with minimum tooling charges. Please refer specific requests direct to the sales office.
Max thickness relates to standard components and actual thickness may be considerably less. Thicker parts, or components with reduced maximum thickness, can be considered by request – please refer
requests to the sales office.
Ordering Information – Standard MLCC Range
1210
Chip Size
0603
0805
1206
1210
1808
1812
1825
2220
2225
3640
5550
8060
Y
Termination
Y
= FlexiCap
TM
termination base with
nickel barrier (100%
matte tin plating).
RoHS compliant.
H
= FlexiCap
termination base with
nickel barrier (tin/lead
plating with min. 10%
lead).
Not RoHS compliant.
F
= Silver Palladium.
RoHS compliant
J
= Silver base with
nickel barrier (100%
matte tin plating).
RoHS compliant
A
= Silver base with
nickel barrier (tin/lead
plating with min. 10%
lead).
Not RoHS compliant
TM
100
Voltage d.c.
(marking code)
010
= 10V
016
= 16V
025
= 25V
050
= 50V
063
= 63V
100
= 100V
200
= 200V
250
= 250V
500
= 500V
630
= 630V
1K0
= 1kV
1K2
=1.2kV
1K5
=1.5kV
2K0
= 2kV
2K5
=2.5kV
3K0
=3kV
4K0
=4kV
5K0
=5kV
6K0
=6kV
8K0
=8kV
10K
=10kV
12K
=12kV
0103
Capacitance in Pico
farads (pF)
<1.0pF
Insert a P for the decimal
point as the first character.
e.g.,
P300
= 0.3pF
Values in 0.1pF steps
≥1.0pF
& <10pF
Insert a P for the decimal
point as the second
character.
e.g.,
8P20
= 8.2pF
Values are E24 series
≥10pF
First digit is 0.
Second and third digits are
significant figures of
capacitance code.
The fourth digit is the
number of zeros following.
e.g.,
0101
= 100 pF
Values are E12 series
J
Capacitance
Tolerance
H:
± 0.05pF
(only available for
values <4.7pF)
<10pF
B:
± 0.10pF
C:
± 0.25pF
D:
± 0.5pF
F:
± 1.0pF
≥10pF
F:
± 1%
G:
± 2%
J:
± 5%
K:
± 10%
M:
± 20%
X
Dielectric
Codes
C
= C0G/NP0
(1B)
X
= X7R
(2R1)
P
= X5R
T
Packaging
T
= 178mm
(7”) reel
R
= 330mm
(13”) reel
B
= Bulk pack
– tubs or trays

Suffix Code
Used for specific
customer
requirements
© Knowles 2014
StandardMLCCDatasheet Issue 4 (P109801) Release Date 04/11/14
Page 1 of 6
Tel: +44 1603 723300 | Email SyferSales@knowles.com | www.knowlescapacitors.com/syfer
Problems with rectangular wave generating circuit
Question: When using a hysteresis comparator + RC delay loop, R3 in the delay loop has a negative feedback effect. Will it cause the amplifier to operate in the linear region? Will it affect the trans...
zzjzzjzzj Analog electronics
Principle of Dialogue Communication
Principle of Dialogue CommunicationDoes anyone have the original color file to share?...
btty038 RF/Wirelessly
Detailed summary! Help you pass the customs with the basic knowledge and selection of power supply topology solutions
[index][#1206510,3149542]1. Linear regulator and LDO topology *[#1206510,3149542]1. Linear voltage regulator *[#1206510,3149543]2. Noise of Linear Regulators and LDOs *[#1206510,3149544]3. Voltage dro...
okhxyyo Power technology
Voltage jump problem
The pressure sensor I use is connected to this circuit. When no load is applied, the pressure difference between IN1+ and IN1- is 0.1mv. The voltage on both sides of C90 keeps jumping between 57mv and...
chenbingjy Analog electronics
【Silicon Labs Development Kit Review】1-Introduction to Main Components
[i=s]This post was last edited by dingzy_2002 on 2021-9-10 16:26[/i]Thanks to EEWORLD admin for giving me this opportunity to review Silicon Labs EFM32PG22 development kit. In fact, the kit has been i...
dingzy_2002 Development Kits Review Area
MCU Basics: Detailed explanation of button single click, double click, and long press
Preface: Many people are careless when learning microcontrollers, and many routines are just knowing what they are, but not why they are. This is actually hurting yourself. It is very convenient to us...
fish001 Microcontroller MCU

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号