EEWORLDEEWORLDEEWORLD

Part Number

Search

SIT9120AI-2CF-25E161.132800T

Description
-40 TO 85C, 5032, 10PPM, 2.5V, 1
CategoryPassive components   
File Size480KB,13 Pages
ManufacturerSiTime
Environmental Compliance
Download Datasheet Parametric View All

SIT9120AI-2CF-25E161.132800T Overview

-40 TO 85C, 5032, 10PPM, 2.5V, 1

SIT9120AI-2CF-25E161.132800T Parametric

Parameter NameAttribute value
Installation typesurface mount
Package/casing6-SMD, no leads
size/dimensions0.197" long x 0.126" wide (5.00mm x 3.20mm)
Height - Installation (maximum)0.032"(0.80mm)
SiT9120
Standard Frequency Differential Oscillator
The Smart Timing Choice
The Smart Timing Choice
Features
Applications
31 standard frequencies from 25 MHz to 212.5 MHz
LVPECL and LVDS output signaling types
0.6 ps RMS phase jitter (random) over 12 kHz to 20 MHz bandwidth
Frequency stability as low as ±10 ppm
Industrial and extended commercial temperature ranges
Industry-standard packages: 3.2x2.5, 5.0x3.2 and 7.0x5.0 mmxmm
For any other frequencies between 1 to 625 MHz, refer to SiT9121
and SiT9122 datasheet
10GB Ethernet, SONET, SATA, SAS, Fibre Channel,
PCI-Express
Telecom, networking, instrumentation, storage, servers
Electrical Characteristics
Parameter and Conditions
Supply Voltage
Symbol
Vdd
Min.
2.97
2.25
2.25
Output Frequency Range
Frequency Stability
f
F_stab
25
-10
-20
-25
-50
First Year Aging
10-year Aging
Operating Temperature Range
Input Voltage High
Input Voltage Low
Input Pull-up Impedance
Start-up Time
Resume Time
Duty Cycle
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Standby Current
Maximum Output Current
Output High Voltage
Output Low Voltage
Output Differential Voltage Swing
Rise/Fall Time
OE Enable/Disable Time
RMS Period Jitter
F_aging1
F_aging10
T_use
VIH
VIL
Z_in
T_start
T_resume
DC
Idd
I_OE
I_leak
I_std
I_driver
VOH
VOL
V_Swing
Tr, Tf
T_oe
T_jitt
-2
-5
-40
-20
70%
2
45
Vdd-1.1
Vdd-1.9
1.2
Typ.
3.3
2.5
100
6
6
61
1.6
300
1.2
1.2
1.2
0.6
Max.
3.63
2.75
3.63
212.5
+10
+20
+25
+50
+2
+5
+85
+70
30%
250
10
10
55
69
35
1
100
30
Vdd-0.7
Vdd-1.5
2.0
500
115
1.7
1.7
1.7
0.85
Unit
V
V
V
MHz
ppm
ppm
ppm
ppm
ppm
ppm
°C
°C
Vdd
Vdd
ms
ms
%
mA
mA
A
A
mA
V
V
V
ps
ns
ps
ps
ps
ps
25°C
25°C
Industrial
Extended Commercial
Pin 1, OE or ST
Pin 1, OE or ST
Pin 1, OE logic high or logic low, or ST logic high
Pin 1, ST logic low
Measured from the time Vdd reaches its rated minimum value.
In Standby mode, measured from the time ST pin crosses
50% threshold.
Contact SiTime for tighter duty cycle
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
ST = Low, for all Vdds
Maximum average current drawn from OUT+ or OUT-
See Figure 1(a)
See Figure 1(a)
See Figure 1(b)
20% to 80%, see Figure 1(a)
f = 212.5 MHz - For other frequencies, T_oe = 100ns + 3 period
f = 100 MHz, VDD = 3.3V or 2.5V
f = 156.25 MHz, VDD = 3.3V or 2.5V
f = 212.5 MHz, VDD = 3.3V or 2.5V
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all
Vdds
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
See Figure 2
Termination schemes in Figures 1 and 2 - XX ordering code
See last page for list of standard frequencies
Inclusive of initial tolerance, operating temperature, rated power
supply voltage, and load variations
Condition
LVPECL and LVDS, Common Electrical Characteristics
LVPECL, DC and AC Characteristics
RMS Phase Jitter (random)
T_phj
LVDS, DC and AC Characteristics
Current Consumption
OE Disable Supply Current
Differential Output Voltage
Idd
I_OE
VOD
250
47
350
55
35
450
mA
mA
mV
SiTime Corporation
Rev. 1.06
990 Almanor Avenue, Sunnyvale, CA 94085
(408) 328-4400
www.sitime.com
Revised October 3, 2014
Make announces its return
[i=s]This post was last edited by dcexpert on 2019-8-20 23:44[/i]A few months ago, Make announced that it would cease publication due to financial problems. A few days ago, Make announced its return.A...
dcexpert MicroPython Open Source section
The mysterious EMC, how did it come about?
Speaking of the difficulties of switching power supplies, PCB layout is not a big problem, but if you want to lay out a good PCB board, it must be one of the difficulties of switching power supplies (...
可乐zzZ MCU
EEWORLD University - Zero-based circuit learning
Zero-based circuit learning : https://training.eeworld.com.cn/course/5492This video is dedicated to helping circuit novices understand circuit knowledge more clearly and quickly....
桂花蒸 Analog electronics
Appointment viewing double gift: How to ensure edge computing security? Learn about an important tool
The convenience and risks brought by IoT and edge computing are: If critical data packets at the edge of the network cannot be accessed, how can network security and service quality be guaranteed? Sch...
nmg Test/Measurement
[Sipeed LicheeRV 86 Panel Review] 6-socket to achieve communication between different processes
Choice of architecture A few days ago, I ported python 3.8 to the development board. The advantages of python are obvious, such as no need for cross-compilation, simple syntax, and many packaged libra...
manhuami2007 Domestic Chip Exchange
Usage diagram of various Arduino basic components
Usage diagram of various Arduino basic components Share what you see...
btty038 Power technology

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号