EEWORLDEEWORLDEEWORLD

Part Number

Search

0805Y0630391JFR

Description
CAP CER 390PF 63V C0G/NP0 0805
CategoryPassive components   
File Size540KB,9 Pages
ManufacturerKnowles
Websitehttp://www.knowles.com
Environmental Compliance
Download Datasheet Parametric View All

0805Y0630391JFR Overview

CAP CER 390PF 63V C0G/NP0 0805

0805Y0630391JFR Parametric

Parameter NameAttribute value
capacitance390pF
Tolerance±5%
Voltage - Rated63V
Temperature CoefficientC0G,NP0
Operating temperature-55°C ~ 125°C
characteristicSoft terminal, high temperature
grade-
applicationHigh reliability, board flexibility sensitive
failure rate-
Installation typeSurface mount, MLCC
Package/casing0805 (2012 Metric)
size/dimensions0.079" long x 0.049" wide (2.00mm x 1.25mm)
Height - Installation (maximum)-
Thickness (maximum)0.051"(1.30mm)
lead spacing-
Lead form-
MLCC
High Reliability IECQ-CECC Ranges
IECQ-CECC MLCC Capacitors
Electrical Details
Capacitance Range
Temperature Coefficient of
Capacitance (TCC)
C0G/NP0
X7R
C0G/NP0
X7R
Insulation Resistance (IR)
Dielectric Withstand Voltage (DWV)
C0G/NP0
X7R
0.47pF to 6.8µF
0 ± 30ppm/˚C
±15% from -55˚C to +125˚C
Cr > 50pF
≤0.0015
Cr
50pF = 0.0015(15÷Cr+0.7)
0.025
100G or 1000secs (whichever is the less)
Voltage applied for 5 ±1 seconds, 50mA
charging current maximum
Zero
<2% per time decade
A range of specialist high reliability MLCCs for use in
critical or high reliability environments. All fully
tested/approved and available with a range of suitable
termination options, including tin/lead plating and Syfer
FlexiCap™.
Dissipation Factor
Ageing Rate
IECQ-CECC – maximum capacitance values
0603
16V
C0G/NP0
X7R
C0G/NP0
X7R
C0G/NP0
X7R
C0G/NP0
X7R
C0G/NP0
X7R
C0G/NP0
X7R
C0G/NP0
X7R
1.5nF
100nF
1.0nF
56nF
470pF
47nF
330pF
10nF
100pF
5.6nF
n/a
n/a
n/a
n/a
0805
6.8nF
330nF
4.7nF
220nF
2.7nF
220nF
1.8nF
47nF
680pF
27nF
330pF
8.2nF
n/a
n/a
1206
22nF
1.0μF
15nF
820nF
10nF
470nF
6.8nF
150nF
2.2nF
100nF
1.5nF
33nF
470pF
4.7nF
1210
33nF
1.5μF
22nF
1.2μF
18nF
1.0μF
12nF
470nF
4.7nF
220nF
3.3nF
100nF
1.0nF
15nF
1808
33nF
1.5μF
27nF
1.2μF
18nF
680nF
12nF
330nF
4.7nF
180nF
3.3nF
100nF
1.2nF
18nF
1812
100nF
3.3μF
68nF
2.2μF
33nF
1.5μF
27nF
1.0μF
12nF
470nF
10nF
270nF
3.3nF
56nF
2220
150nF
5.6μF
100nF
4.7μF
68nF
2.2μF
47nF
1.5μF
22nF
1.0μF
15nF
560nF
8.2nF
120nF
2225
220nF
6.8μF
150nF
5.6μF
100nF
3.3μF
68nF
1.5μF
27nF
1.0μF
22nF
820nF
10nF
150nF
25V
50/63V
100V
200/250V
500V
1kV
Ordering Information – IECQ-CECC Range
1210
Chip Size
0603
0805
1206
1210
1808
1812
2220
2225
Y
Termination
Y
= FlexiCap™
termination base with
nickel barrier (100%
matte tin plating).
RoHS compliant.
H
= FlexiCap™
termination base with
nickel barrier (Tin/
lead plating with min.
10% lead). Not RoHS
compliant.
F
= Silver Palladium.
RoHS compliant.
J
= Silver base with
nickel barrier (100%
matte tin plating).
RoHS compliant.
A
= Silver base with
nickel barrier (Tin/lead
plating with min. 10%
lead). Not RoHS
compliant.
100
Rated Voltage
016
= 16V
025
= 25V
050
= 50V
063
= 63V
100
= 100V
200
= 200V
250
= 250V
500
= 500V
1K0
= 1kV
0103
Capacitance in Pico
farads (pF)
First digit is 0.
Second and third digits are
significant figures of
capacitance code. The fourth
digit is number of zeros
following. Example:
0103
= 10nF
J
Capacitance
Tolerance
<10pF
B
= ±0.1pF
C
= ±0.25pF
D
= ±0.5pF
10pF
F
= ±1%
G
= ±2%
J
= ±5%
K
= ±10%
M
= ±20%
D
Dielectric
Codes
D
= X7R (2R1) with
IECQCECC release
F
= C0G/NP0
(1B/NP0) with
IECQCECC release
B
= 2X1/BX
released in
accordance with
IECQ-CECC
R
= 2C1/BZ
released in
accordance with
IECQ-CECC
For
B
and
R
codes
please refer to
TCC/VCC range for
full capacitance
values
T
Packaging
T
= 178mm
(7”) reel
R
= 330mm
(13”) reel
B
= Bulk pack
- tubs or trays
___
Suffix code
Used for specific
customer
requirements
© Knowles 2014
IECQ-CECCDatasheet Issue 4 (P109796) Release Date 04/11/14
Page 1 of 9
Tel: +44 1603 723300 | Email SyferSales@knowles.com | www.knowlescapacitors.com/syfer
Thank you all for your help. Thank you very much.
I need help with an assembly language program that uses two digital tubes to achieve dynamic refresh scrolling display, with the format of "00~99" . The digital tube displays a number plus 1 every 1s ...
qqqqqe 51mcu
Active RFID Design Based on MSP430 and CC1100
Radio Frequency Identification (RFID) technology is a contactless automatic identification technology that uses wireless radio frequency communication. Compared with the currently widely used barcode ...
fish001 Microcontroller MCU
I have a question about 7060 chip burning!
How to program the ADUC7060 chip? Only the Hilt 6100 programmer can be used?...
zhulala2019 ADI Reference Circuit
Looking for a chip that drives multiple indicator lights
The microcontroller is 5V, but many indicator lights are 24V. Most indicator lights have a current of 10~100MA, and there are usually more than 10 of them. I often use optocouplers + transistors to sw...
sky999 PCB Design
Brief analysis of the application principles of common protective devices in security products
With the continuous progress of society, the security industry continues to grow rapidly, and security products have been widely used. Whether it is public utilities, commercial or civilian, security ...
langtuodianzi Security Electronics
In the LM5118 datasheet, Application and Implementation section, "Minimum load current (CCM operation) = 600mA", what does it mean?
[i=s]This post was last edited by yhyworld on 2019-11-20 16:38[/i]See Figure 1,LM5118 specification, 8.2.1 Design Requirements, minimum load current (CCM operation) = 600mA. Figure 2 is Figure 19 ment...
yhyworld Power technology

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号