PD- 93815A
SMPS MOSFET
Applications
l
High frequency DC-DC converters
IRFR18N15D
IRFU18N15D
HEXFET
®
Power MOSFET
V
DSS
150V
R
DS(on)
max
0.125Ω
I
D
18A
Benefits
l
Low Gate to Drain Charge to Reduce
Switching Losses
l
Fully Characterized Capacitance Including
Effective C
OSS
to Simplify Design, (See
App. Note AN1001)
l
Fully Characterized Avalanche Voltage
and Current
D-Pak
IRFR18N15D
I-Pak
IRFU18N15D
Absolute Maximum Ratings
Parameter
I
D
@ T
C
= 25°C
I
D
@ T
C
= 100°C
I
DM
P
D
@T
C
= 25°C
V
GS
dv/dt
T
J
T
STG
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery dv/dt
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Max.
18
13
72
110
0.71
± 30
3.3
-55 to + 175
300 (1.6mm from case )
Units
A
W
W/°C
V
V/ns
°C
Typical SMPS Topologies
l
Telecom 48V input DC-DC Active Clamp Reset Forward Converter
Notes
through
are on page 10
www.irf.com
1
2/23/00
IRFR18N15D/IRFU18N15D
Static @ T
J
= 25°C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage
∆V
(BR)DSS
/∆T
J
Breakdown Voltage Temp. Coefficient
R
DS(on)
Static Drain-to-Source On-Resistance
V
GS(th)
Gate Threshold Voltage
V
(BR)DSS
I
DSS
I
GSS
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min.
150
–––
–––
3.0
–––
–––
–––
–––
Typ.
–––
0.17
–––
–––
–––
–––
–––
–––
Max. Units
Conditions
–––
V
V
GS
= 0V, I
D
= 250µA
––– V/°C Reference to 25°C, I
D
= 1mA
0.125
Ω
V
GS
= 10V, I
D
= 11A
5.5
V
V
DS
= V
GS
, I
D
= 250µA
25
V
DS
= 150V, V
GS
= 0V
µA
250
V
DS
= 120V, V
GS
= 0V, T
J
= 150°C
100
V
GS
= 30V
nA
-100
V
GS
= -30V
Dynamic @ T
J
= 25°C (unless otherwise specified)
g
fs
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
oss
eff.
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
4.2
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
28
7.6
14
8.8
25
15
9.8
900
190
49
1160
88
95
Max. Units
Conditions
–––
S
V
DS
= 50V, I
D
= 11A
43
I
D
= 11A
11
nC V
DS
= 120V
21
V
GS
= 10V,
–––
V
DD
= 75V
–––
I
D
= 11A
ns
–––
R
G
= 6.8Ω
–––
V
GS
= 10V
–––
V
GS
= 0V
–––
V
DS
= 25V
–––
pF
ƒ = 1.0MHz
–––
V
GS
= 0V, V
DS
= 1.0V, ƒ = 1.0MHz
–––
V
GS
= 0V, V
DS
= 120V, ƒ = 1.0MHz
–––
V
GS
= 0V, V
DS
= 0V to 120V
Avalanche Characteristics
Parameter
E
AS
I
AR
E
AR
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Typ.
–––
–––
–––
Max.
200
11
11
Units
mJ
A
mJ
Thermal Resistance
Parameter
R
θJC
R
θJA
R
θJA
Junction-to-Case
Junction-to-Ambient (PCB mount)*
Junction-to-Ambient
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Typ.
–––
–––
–––
Min. Typ. Max. Units
Max.
1.4
50
110
Units
°C/W
Diode Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Conditions
D
MOSFET symbol
18
––– –––
showing the
A
G
integral reverse
72
––– –––
S
p-n junction diode.
––– ––– 1.3
V
T
J
= 25°C, I
S
= 11A, V
GS
= 0V
––– 130 190
ns
T
J
= 25°C, I
F
= 11A
––– 660 980
nC
di/dt = 100A/µs
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
2
www.irf.com
IRFR18N15D/IRFU18N15D
100
VGS
TOP
15V
10V
9.0V
8.0V
7.5V
7.0V
6.5V
BOTTOM 6.0V
100
I
D
, Drain-to-Source Current (A)
10
I
D
, Drain-to-Source Current (A)
VGS
15V
10V
9.0V
8.0V
7.5V
7.0V
6.5V
BOTTOM 6.0V
TOP
10
1
6.0V
6.0V
0.1
0.1
20µs PULSE WIDTH
T
J
= 25
°
C
1
10
100
1
0.1
20µs PULSE WIDTH
T
J
= 175
°
C
1
10
100
V
DS
, Drain-to-Source Voltage (V)
V
DS
, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
100
3.0
I
D
= 18A
R
DS(on)
, Drain-to-Source On Resistance
(Normalized)
I
D
, Drain-to-Source Current (A)
2.5
T
J
= 175
°
C
2.0
10
1.5
T
J
= 25
°
C
1.0
0.5
1
6
7
8
9
V DS = 50V
20µs PULSE WIDTH
10
11
12
0.0
-60 -40 -20
V
GS
= 10V
0
20 40 60 80 100 120 140 160 180
V
GS
, Gate-to-Source Voltage (V)
T
J
, Junction Temperature (
°
C)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Normalized On-Resistance
Vs. Temperature
www.irf.com
3
IRFR18N15D/IRFU18N15D
20
10000
I
D
= 11A
V
DS
= 120V
V
DS
= 75V
V
DS
= 30V
V
GS
, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
Ciss = C + Cgd , C
gs
ds SHORTED
Crss = C
gd
Coss = C + C
ds
gd
16
C, Capacitance(pF)
1000
Ciss
12
Coss
100
8
Crss
4
10
1
10
100
1000
0
0
10
20
FOR TEST CIRCUIT
SEE FIGURE 13
30
40
VDS , Drain-to-Source Voltage (V)
Q
G
, Total Gate Charge (nC)
Fig 5.
Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge Vs.
Gate-to-Source Voltage
100
1000
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
I
SD
, Reverse Drain Current (A)
10
T
J
= 175
°
C
T
J
= 25
°
C
1
I
D
, Drain Current (A)
100
10us
10
100us
0.1
0.2
V
GS
= 0 V
0.5
0.8
1.1
1.4
1
1
T
C
= 25 ° C
T
J
= 175 ° C
Single Pulse
10
100
1ms
10ms
1000
V
SD
,Source-to-Drain Voltage (V)
V
DS
, Drain-to-Source Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4
www.irf.com
IRFR18N15D/IRFU18N15D
20
V
DS
V
GS
R
D
16
D.U.T.
+
R
G
I
D
, Drain Current (A)
-
V
DD
12
V
GS
Pulse Width
≤ 1
µs
Duty Factor
≤ 0.1 %
8
Fig 10a.
Switching Time Test Circuit
4
V
DS
90%
0
25
50
75
100
125
150
175
T
C
, Case Temperature
( °C)
10%
V
GS
Fig 9.
Maximum Drain Current Vs.
Case Temperature
t
d(on)
t
r
t
d(off)
t
f
Fig 10b.
Switching Time Waveforms
10
Thermal Response (Z
thJC
)
1
D = 0.50
0.20
0.10
0.1
0.05
0.02
0.01
t
1
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D = t
1
/ t
2
2. Peak T
J
= P
DM
x Z
thJC
+ T
C
0.0001
0.001
0.01
0.1
t
2
P
DM
0.01
0.00001
t
1
, Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5