52 standard frequencies between 3.57 MHz and 77.76 MHz
100% pin-to-pin drop-in replacement to quartz-based XO
Excellent total frequency stability as low as ±20 ppm
Operating temperature from -40°C to 85°C. For 125°C and/or
-55°C options, refer to
SiT1618, SiT8918, SiT8920
Low power consumption of 3.5 mA typical at 1.8V
Standby mode for longer battery life
Fast startup time of 5 ms
LVCMOS/HCMOS compatible output
Industry-standard packages: 2.0 x 1.6, 2.5 x 2.0, 3.2 x 2.5,
5.0 x 3.2, 7.0 x 5.0 mm x mm
Instant samples with
Time Machine II
and
Field Programmable
Oscillators
Ideal for DSC, DVC, DVR, IP CAM, Tablets, e-Books,
SSD, GPON, EPON, etc
Ideal for high-speed serial protocols such as: USB,
SATA, SAS, Firewire, 100M / 1G / 10G Ethernet, etc.
RoHS and REACH compliant, Pb-free, Halogen-free and
Antimony-free
For AEC-Q100 oscillators, refer to
SiT8924
and
SiT8925
Electrical Characteristics
All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise
stated. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics
Parameters
Output Frequency Range
Symbol
f
Min.
Typ.
Max.
Unit
Condition
Refer to
Table 13
for the exact list of supported frequencies
Frequency Range
52 standard frequencies between
MHz
3.57 MHz and 77.76 MHz
-20
-25
-50
-20
-40
1.62
2.25
2.52
2.7
2.97
2.25
–
–
–
–
–
–
–
–
45
–
–
–
90%
Frequency Stability
F_stab
Frequency Stability and Aging
–
+20
ppm
Inclusive of initial tolerance at 25°C, 1st year aging at 25°C,
and variations over operating temperature, rated power
–
+25
ppm
supply voltage and load.
–
+50
ppm
Operating Temperature Range
–
+70
°C
Extended Commercial
–
+85
°C
Industrial
Supply Voltage and Current Consumption
1.8
1.98
V
Contact
SiTime
for 1.5V support
2.5
2.75
V
2.8
3.08
V
3.0
3.3
V
3.3
3.63
V
–
3.63
V
3.8
4.5
mA
No load condition, f = 20 MHz, Vdd = 2.8V to 3.3V
3.7
4.2
mA
No load condition, f = 20 MHz, Vdd = 2.5V
3.5
4.1
mA
No load condition, f = 20 MHz, Vdd = 1.8V
–
4.2
mA
Vdd = 2.5V to 3.3V, OE = GND, Output in high-Z state
–
4.0
mA
Vdd = 1.8 V. OE = GND, Output in high-Z state
2.6
4.3
ST = GND, Vdd = 2.8V to 3.3V, Output is weakly pulled down
̅ ̅̅
A
1.4
2.5
ST = GND, Vdd = 2.5V, Output is weakly pulled down
̅ ̅̅
A
0.6
1.3
ST = GND, Vdd = 1.8V, Output is weakly pulled down
̅ ̅̅
A
LVCMOS Output Characteristics
–
1
1.3
–
–
55
2
2.5
2
–
%
ns
ns
ns
Vdd
All Vdds. See Duty Cycle definition in
Figure 3
and
Footnote 6
Vdd = 2.5V, 2.8V, 3.0V or 3.3V, 20% - 80%
Vdd =1.8V, 20% - 80%
Vdd = 2.25V - 3.63V, 20% - 80%
IOH = -4 mA (Vdd = 3.0V or 3.3V)
IOH = -3 mA (Vdd = 2.8V and Vdd = 2.5V)
IOH = -2 mA (Vdd = 1.8V)
IOL = 4 mA (Vdd = 3.0V or 3.3V)
IOL = 3 mA (Vdd = 2.8V and Vdd = 2.5V)
IOL = 2 mA (Vdd = 1.8V)
Operating Temperature Range
T_use
Supply Voltage
Vdd
Current Consumption
Idd
OE Disable Current
Standby Current
I_OD
I_std
Duty Cycle
Rise/Fall Time
DC
Tr, Tf
Output High Voltage
VOH
Output Low Voltage
VOL
–
–
10%
Vdd
Rev 1.04
January 30, 2018
www.sitime.com
SiT1602B
Low Power, Standard Frequency Oscillator
Table 1. Electrical Characteristics (continued)
Parameters
Symbol
Min.
Typ.
–
–
87
–
–
–
–
1.8
1.8
12
14
0.5
1.3
Max.
–
30%
150
–
Unit
Pin 1, OE or ST
̅ ̅̅
Pin 1, OE or ST
̅ ̅̅
Pin 1, OE logic high or logic low, or ST logic high
̅ ̅̅
Pin 1, ST logic low
̅ ̅̅
Condition
Input Characteristics
Input High Voltage
Input Low Voltage
Input Pull-up Impedance
VIH
VIL
Z_in
70%
–
50
2
Startup Time
Enable/Disable Time
Resume Time
RMS Period Jitter
Peak-to-peak Period Jitter
RMS Phase Jitter (random)
–
–
–
–
–
T_pk
T_phj
–
–
–
–
Vdd
Vdd
k
M
ms
ns
ms
ps
ps
ps
ps
ps
ps
Startup and Resume Timing
T_start
T_oe
T_resume
T_jitt
5
138
5
Jitter
3
3
25
30
0.9
2
f = 75 MHz, Vdd = 2.5V, 2.8V, 3.0V or 3.3V
f = 75 MHz, Vdd = 1.8V
f = 75 MHz, Vdd = 2.5V, 2.8V, 3.0V or 3.3V
f = 75 MHz, Vdd = 1.8V
f = 75 MHz, Integration bandwidth = 900 kHz to 7.5 MHz
f = 75 MHz, Integration bandwidth = 12 kHz to 20 MHz
Measured from the time Vdd reaches its rated minimum value
f = 77.76 MHz. For other frequencies, T_oe = 100 ns + 3 *
cycles
Measured from the time ST pin crosses 50% threshold
̅ ̅̅
Table 2. Pin Description
Pin
Symbol
[1]
Functionality
Output Enable
H : specified frequency output
L: output is high impedance. Only output driver is disabled.
H : specified frequency output
L: output is low (weak pull down). Device goes to sleep mode. Supply
current reduces to I_std.
Any voltage between 0 and Vdd or Open : Specified frequency
output. Pin 1 has no function.
Electrical ground
Oscillator output
Power supply voltage
[2]
[1]
[1]
Top View
OE/ST/NC
VDD
1
OE/ST /NC
̅ ̅̅
Standby
No Connect
2
3
4
GND
OUT
VDD
Power
Output
Power
GND
OUT
Figure 1. Pin Assignments
Notes:
1. In OE or ST mode, a pull-up resistor of 10 kΩ or less is recommended if pin 1 is not externally driven. If pin 1 needs to be left floating, use the NC option.
̅ ̅̅
2. A capacitor of value 0.1 µF or higher between Vdd and GND is required.
Rev 1.04
Page 2 of 17
www.sitime.com
SiT1602B
Low Power, Standard Frequency Oscillator
Table 3. Absolute Maximum Limits
Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance
of the IC is only guaranteed within the operational specifications, not at absolute maximum rat ings.
Parameter
Storage Temperature
Vdd
Electrostatic Discharge
Soldering Temperature (follow standard Pb free
soldering guidelines)
Junction Temperature
[3]
Min.
-65
-0.5
–
–
–
Max.
150
4
2000
260
150
Unit
°C
V
V
°C
°C
Note:
3. Exceeding this temperature for extended period of time may damage the device.
Table 4. Thermal Consideration
[4]
Package
7050
5032
3225
2520
2016
Note:
4. Refer to JESD51 for
JA
and
JC
definitions, and reference layout used to determine the
JA
and
JC
values in the above table.
JA, 4 Layer Board
(°C/W)
142
97
109
117
152
JA, 2 Layer Board
(°C/W)
273
199
212
222
252
JC, Bottom
(°C/W)
30
24
27
26
36
Table 5. Maximum Operating Junction Temperature
[5]
Max Operating Temperature (ambient)
70°C
85°C
Maximum Operating Junction Temperature
80°C
95°C
Note:
5. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.
Table 6. Environmental Compliance
Parameter
Mechanical Shock
Mechanical Vibration
Temperature Cycle
Solderability
Moisture Sensitivity Level
Condition/Test Method
MIL-STD-883F, Method 2002
MIL-STD-883F, Method 2007
JESD22, Method A104
MIL-STD-883F, Method 2003
MSL1 @ 260°C
Rev 1.04
Page 3 of 17
www.sitime.com
SiT1602B
Low Power, Standard Frequency Oscillator
Test Circuit and Waveform
[6]
Vdd
Vout
Test Point
tr
80% Vdd
tf
4
Power
Supply
0.1 uF
1
3
2
15pF
(including probe
and fixture
capacitance)
50%
20% Vdd
High Pulse
(TH)
Period
Low Pulse
(TL)
Vdd
OE/ST Function
1 kΩ
Figure 2. Test Circuit
Note:
6. Duty Cycle is computed as Duty Cycle = TH/Period.
Figure 3. Waveform
Timing Diagrams
90% Vdd
Vdd
Vdd
50% Vdd
[7]
Pin 4 Voltage
T_start
No Glitch
during start up
ST Voltage
T_resume
CLK Output
HZ
T_start: Time to start from power-off
CLK Output
HZ
T_resume: Time to resume from ST
Figure 4. Startup Timing (OE/ ST̅ Mode)
̅ ̅
Figure 5. Standby Resume Timing ( ST̅ Mode Only)
̅ ̅
Vdd
50% Vdd
OE Voltage
T_oe
Vdd
OE Voltage
50% Vdd
T_oe
CLK Output
HZ
T_oe: Time to re-enable the clock output
CLK Output
HZ
T_oe: Time to put the output in High Z mode
Figure 6. OE Enable Timing (OE Mode Only)
Figure 7. OE Disable Timing (OE Mode Only)
Note:
7. SiT1602 has “no runt” pulses and “no glitch” output during startup or resume.
|Get a gift for grabbing a houseEvent time: From now until November 30How to participate:1. Enter" Infineon Tmall Flagship Store ";
2. Select the product you are interested in, enter the product detai...
[i=s]This post was last edited by lvxinn2006 on 2019-1-11 08:54[/i] [p=30, 2, left][size=14px]The development board ST NUCLEO-G071RB evaluated in this event is provided by STMicroelectronics. Thanks t...
Since GigaDevice launched the world's first RISC-V core GD32V103, it has not launched any RISC-V core MCU products.
At this time, various RISC-Vs are emerging one after another, but it seems that Giga...
According to the previous post, we have a deeper understanding of the SD card peripheral.This article focuses on the porting process and how to port to other MCUs, with emphasis on methods.
The follow...
NET-2411 is a data acquisition card based on Ethernet bus, which can be directly connected to the RJ45 network port of the computer to form a data acquisition, waveform analysis and processing system ...
There are many types of electric vehicles, including two-wheeled and three-wheeled vehicles, and even low-speed vehicles such as electric buses. They are low-carbon and environmentally friendly, an...[Details]
Stepper motor driver dial
A stepper motor driver is an electronic device used to control the operation of a stepper motor. It generally uses a DIP switch to set the parameters of the stepper m...[Details]
Soft start is a motor starting method that controls the starting current of the motor to gradually accelerate the motor during the starting process, thereby reducing the current shock and mechanica...[Details]
When your power equipment (electromechanical, electrical appliances, etc.) has stricter requirements, you may consider using Shenzhen Baowei's single-phase STS static transfer switch, which can ach...[Details]
Infineon Technologies AG, a leading global supplier of semiconductor solutions, and Swoboda, an expert in sensor module development and commercialization, have announced a partnership to jointly de...[Details]
As the penetration rate of new energy vehicles reaches 40% per week, the current home charging conditions for pure electric vehicles have become an important constraint affecting their development....[Details]
A/D conversion, also known as analog/digital conversion, is the process of converting analog signals into digital signals that can be processed by computers. The S3C2440 integrates an 8-channel 10-...[Details]
According to news on September 13, all new products released by Apple today have no improvement in battery life compared with previous generations of products. This is contrary to numerous rumors ahe...[Details]
Arrow Electronics is helping to forge a new path in advancing mobility. Using advanced processors made by NVIDIA, Arrow has designed the first artificial intelligence (AI) steering system that uses...[Details]
OFweek Cup · OFweek 2023 China
Robot
Industry Annual Selection (abbreviated as OFweek Robot Awards 2023) is jointly organized by OFweek, China's high-tech industry portal, and its authorita...[Details]
Power management via Industrial Ethernet, Power management via PROFINET
The configuration of the Industrial Ethernet interface with the help of CapCtrl.xml is not a function of PROFIenergy and...[Details]
As we all know, Xiaomi's smart set includes 4 sets of human body sensors, door and window sensors, wireless switches and multi-function gateways, which use an industrial-grade ZigBee RF chip based ...[Details]
As
the "holy grail" of the
power battery
field, solid-state
batteries
can theoretically completely solve
the pain points of
electric vehicles
in terms of safety,
driving r...[Details]
Although Tesla’s new Model 3 is not equipped with HW 4.0 hardware, it does not add 4D millimeter wave radar , and even cancels millimeter wave radar. But there is no doubt that the popularity of 4D ...[Details]
Automotive sensor bonding
New electronic adhesive promotes the development of autonomous driving technology
Windach, October 12, 2023 | DELO has developed a flexible electroni...[Details]