0.375” (9.5mm) lead length, 5lbs. (2.3 kg) tension
• Includes 1N6267 thru 1N6303A
1.0 (25.4)
MIN.
0.210 (5.3)
0.190 (4.8)
DIA.
0.375 (9.5)
0.285 (7.2)
Mechanical Data
Case:
Molded plastic body over passivated junction
Terminals:
Plated axial leads, solderable per MIL-STD-
750, Method 2026
Polarity:
For unidirectional types the color band denotes
the cathode, which is positive with respect to the anode
under normal TVS operation
Mounting Position:
Any
Weight:
0.045oz., 1.2g
Packaging codes/options:
1/1K per Bulk Box, 11K/box
4/1.4K per 13” Reel (52mm Tape), 4.2K/box
Dimensions in inches
and (millimeters)
1.0 (25.4)
MIN.
0.042 (1.07)
0.038 (0.96)
DIA.
Devices for Bidirectional Applications
For bi-directional, use C or CA suffix for types 1.5KE6.8 thru types 1.5KE440
(e.g. 1.5KE6.8C, 1.5KE440CA). Electrical characteristics apply in both directions.
Maximum Ratings and Characteristics
(T
Parameter
Peak power dissipation with a 10/1000µs waveform
(1)
(Fig. 1)
A
= 25°C unless otherwise noted)
Symbol
P
PPM
I
PPM
P
M(AV)
Limit
Minimum 1500
See Next Table
6.5
Unit
W
A
W
Peak pulse current wih a 10/1000µs waveform
(1)
Steady state power dissipation
at T
L
= 75
O
C, lead lengths 0.375” (9.5mm)
(2)
Peak forward surge current, 8.3ms
single half sine-wave superimposed on rated load
(JEDEC Method) unidirectional only
(3)
Maximum instantaneous forward voltage
at 100A for unidirectional only
(4)
Typical thermal resistance junction-to-lead
Typical thermal resistance junction-to-ambient
Operating junction and storage temperature range
Notes:
(1)
(2)
(3)
(4)
I
FSM
200
A
V
F
R
θJL
R
θJA
T
J
, T
STG
3.5/5.0
20
75
–55 to +175
V
°C/W
°C/W
O
C
Non-repetitive current pulse, per Fig.3 and derated above T
A
= 25°C per Fig. 2
Mounted on copper pad area of 1.6 x 1.6” (40 x 40mm) per Fig. 5
Measured on 8.3ms single half sine-wave or equivalent square wave, duty cycle = 4 pulses per minute maximum
V
F
= 3.5V for devices of V
(BR)
< 220V, and V
F
= 5.0 Volt max. for devices of V
(BR)
> 220V
11/7/00
1.5KE6.8 thru 1.5KE440CA
and 1N6267 thru 1N6303A
T
RANS
Z
ORB
®
Transient Voltage Suppressors
Electrical Characteristics
(T
JEDEC
Type
Number
1N6267
1N6267A
1N6268
1N6268A
1N6269
1N6269A
1N6270
1N6270A
1N6271
1N6271A
1N6272
1N6272A
1N6273
1N6273A
1N6274
1N6274A
1N6275
1N6275A
1N6276
1N6276A
1N6277
1N6277A
1N6278
1N6278A
1N6279
1N6279A
1N6280
1N6280A
1N6281
1N6281A
1N6282
1N6282A
1N6283
1N6283A
1N6284
1N6284A
1N6285
1N6285A
1N6286
1N6286A
1N6287
1N6287A
1N6288
1N6288A
1N6289
1N6289A
1N6290
1N6290A
1N6291
General
Semiconductor
Part
Number
+1.5KE6.8
+1.5KE6.8A
+1.5KE7.5
+1.5KE7.5A
+1.5KE8.2
+1.5KE8.2A
+1.5KE9.1
+1.5KE9.1A
+1.5KE10
+1.5KE10A
+1.5KE11
+1.5KE11A
+1.5KE12
+1.5KE12A
+1.5KE13
+1.5KE13A
+1.5KE15
+1.5KE15A
+1.5KE16
+1.5KE16A
+1.5KE18
+1.5KE18A
+1.5KE20
+1.5KE20A
+1.5KE22
+1.5KE22A
+1.5KE24
+1.5KE24A
+1.5KE27
+1.5KE27A
+1.5KE30
+1.5KE30A
+1.5KE33
+1.5KE33A
+1.5KE36
+1.5KE36A
+1.5KE39
+1.5KE39A
+1.5KE43
+1.5KE43A
+1.5KE47
+1.5KE47A
1.5KE51
1.5KE51A
1.5KE56
1.5KE56A
1.5KE62
1.5KE62A
1.5KE68
A
= 25°C unless otherwise noted)
Breakdown Voltage
V
(BR)
(V)
(1)
Min
6.12
6.45
6.75
7.13
7.38
7.79
8.19
8.65
9.00
9.50
9.90
10.5
10.8
11.4
11.7
12.4
13.5
14.3
14.4
15.2
16.2
17.1
18.0
19.0
19.8
20.9
21.6
22.8
24.3
25.7
27.0
28.5
29.7
31.4
32.4
34.2
35.1
37.1
38.7
40.9
42.3
44.7
45.9
48.5
50.4
53.2
55.8
58.9
61.2
Max
7.48
7.14
8.25
7.88
9.02
8.61
10.0
9.55
11.0
10.5
12.1
11.6
13.2
12.6
14.3
13.7
16.5
15.8
17.6
16.8
19.8
18.9
22.0
21.0
24.2
23.1
26.4
25.2
29.7
28.4
33.0
31.5
36.3
34.7
39.6
37.8
42.9
41.0
47.3
45.2
51.7
49.4
56.1
53.6
61.8
58.8
68.2
65.1
74.8
Test
Current
at
I
T
(mA)
10
10
10
10
10
10
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Stand-off
Voltage
V
WM
(V)
5.50
5.80
6.05
6.40
6.63
7.02
7.37
7.78
8.10
8.55
8.92
9.40
9.72
10.2
10.5
11.1
12.1
12.8
12.9
13.6
14.5
15.3
16.2
17.1
17.8
18.8
19.4
20.5
21.8
23.1
24.3
25.6
26.8
28.2
29.1
30.8
31.6
33.3
34.8
36.8
38.1
40.2
41.3
43.6
45.4
47.8
50.2
53.0
55.1
Maximum
Reverse
Leakage
at V
WM
I
D
(4)
(µA)
1000
1000
500
500
200
200
50
50
10
10
5.0
5.0
5.0
5.0
5.0
5.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Maximum
Peak Pulse
Current
I
PPM
(2)
(A)
139
143
128
133
120
124
109
112
100
103
92.6
96.2
86.7
89.8
78.9
82.4
68.2
70.8
63.8
66.7
56.6
59.5
51.5
54.2
47.0
49.0
43.2
45.2
38.4
40.0
34.5
36.2
31.4
32.8
28.8
30.1
26.6
27.8
24.2
25.3
22.1
23.1
20.4
21.4
18.6
19.5
16.9
17.6
15.3
Maximum
Clamping
Voltage
at I
PPM
V
C
(V)
10.8
10.5
11.7
11.3
12.5
12.1
13.8
13.4
15.0
14.5
16.2
15.6
17.3
16.7
19.0
18.2
22.0
21.2
23.5
22.5
26.5
25.2
29.1
27.7
31.9
30.6
34.7
33.2
39.1
37.5
43.5
41.4
47.7
45.7
52.0
49.9
56.4
53.9
61.9
59.3
67.8
64.8
73.5
70.1
80.5
77.0
89.0
85.0
98.0
Maximum
Temp.
Coefficient
of V
(BR)
(% /
°C)
0.057
0.057
0.061
0.061
0.065
0.065
0.068
0.068
0.073
0.073
0.075
0.075
0.076
0.078
0.081
0.081
0.084
0.084
0.086
0.086
0.088
0.089
0.090
0.090
0.092
0.092
0.094
0.094
0.096
0.096
0.097
0.097
0.098
0.098
0.099
0.099
0.100
0.100
0.101
0.101
0.101
0.101
0.102
0.102
0.103
0.103
0.104
0.104
0.104
1.5KE6.8 thru 1.5KE440CA
and 1N6267 thru 1N6303A
T
RANS
Z
ORB
®
Transient Voltage Suppressors
Electrical Characteristics
(Cont’d)
JEDEC
Type
Number
1N6291A
1N6292
1N6292A
1N6293
1N6293A
1N6294
1N6294A
1N6295
1N6295A
1N6296
1N6296A
1N6297
1N6297A
1N6298
1N6298A
1N6299
1N6299A
1N6300
1N6300A
1N6301
1N6301A
1N6302
1N6302A
1N6303
1N6303A
General
Semiconductor
Part
Number
1.5KE68A
1.5KE75
1.5KE75A
1.5KE82
1.5KE82A
1.5KE91
1.5KE91A
1.5KE100
1.5KE100A
1.5KE110
1.5KE 110A
1.5KE120
1.5KE120A
1.5KE130
1.5KE130A
1.5KE150
1.5KE150A
1.5KE160
1.5KE160A
1.5KE170
1.5KE170A
1.5KE180
1.5KE180A
1.5KE200
1.5KE200A*
1.5KE220
1.5KE220A*
1.5KE250
1.5KE250A
1.5KE300
1.5KE300A
1.5KE350
1.5KE350A
1.5KE400
1.5KE400A
1.5KE440
1.5KE440A
Breakdown Voltage
V
(BR)
(V)
(1)
Min
64.6
67.5
71.3
73.8
77.9
81.9
86.5
90.0
95.0
99.0
105
108
114
117
124
136
143
144
152
153
162
162
171
180
190
198
209
225
237
270
285
315
333
360
380
396
418
Max
71.4
82.5
78.8
90.2
86.1
100.0
95.5
110
105
121
116
132
126
143
137
165
158
176
168
187
179
198
189
220
210
242
231
275
263
330
315
385
368
440
420
484
462
(T
A
= 25°C unless otherwise noted)
Test
Current
at
I
T
(mA)
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Stand-off
Voltage
V
WM
(V)
58.1
60.7
64.1
66.4
70.1
73.7
77.8
81.0
85.5
89.2
94.0
97.2
102
105
111
121
128
130
136
138
145
146
154
162
171
175
185
202
214
243
256
284
300
324
342
356
376
Maximum
Reverse
Leakage
at V
WM
I
D
(4)
(µA)
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Maximum
Peak Pulse
Current
I
PPM
(2)
(A)
16.3
13.9
14.6
12.7
13.3
11.5
12.0
10.4
10.9
9.5
9.9
8.7
9.1
8.0
8.4
7.0
7.2
6.5
6.8
6.1
6.4
5.8
6.1
5.2
5.5
4.4
4.6
4.2
4.4
3.5
3.6
3.0
3.1
2.6
2.7
2.4
2.5
Maximum
Clamping
Voltage
at I
PPM
V
C
(V)
92.0
109
104
118
113
131
125
144
137
158
152
173
165
187
179
215
207
230
219
244
234
258
246
287
274
344
328
360
344
430
414
504
482
574
548
631
602
Maximum
Temp.
Coefficient
of V
(BR)
(% /
°C)
0.104
0.105
0.105
0.105
0.105
0.106
0.106
0.106
0.106
0.107
0.107
0.107
0.107
0.107
0.107
0.108
0.106
0.106
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
Notes:
(1) V
(BR)
measured after I
T
applied for 300µs, I
T
=square wave pulse or equivalent
(2) Surge current waveform per Fig. 3 and derate per Fig. 2
(3) All terms and symbols are consistent with ANSI/IEEE CA62.35
(4) For bidirectional types with V
R
10 volts and less the I
D
limit is doubled
* Bidirectional versions are UL approved under component across the line protection, ULV1414 file number E108274 (1.5KE200CA, 1.5KE220CA)
+ UL listed for Telecom applications protection, 497B, file number E136766 for both uni-directional and bi-directional devices
Application
• This series of Silicon Transient Suppressors is used in applications where large voltage transients can permanently damage voltage-sensitive components.
• The TVS diode can be used in applications where induced lightning on rural or remote transmission lines presents a hazard to electronic circuitry
(ref: R.E.A. specification P.E. 60).
• This Transient Voltage Suppressor diode has a pulse power rating of 1500 watts for one millisecond. The response time of TVS diode clamping action is
effectively instantaneous (1 x 10
-9
seconds bidirectional); therefore, they can protect integrated circuits, MOS devices, hybrids, and other voltage sensitive
semiconductors and components. TVS diodes can also be used in series or parallel to increase the peak power ratings.
TMS320C6678 is an 8-core DSP processor based on KeyStone architecture. The frequency of each CorePac core is up to 1.25 GHz, providing powerful fixed-point and floating-point computing capabilities. A...
Author: Wang Huidong, a member of Yibo Technology Expressway MediaThe most beautiful memory in life is not the rainy day.
But the eaves where I hid with you,
There is also EDG, who I played with.
Pain...
Event details: Click here to view
The following is the full list of finalists for this event. The list was selected by EEWorl and Pingtouge engineers. The basic principle for the judges' selection is:...
The rt description only mentions the on and off commands. Is this thing for self-heating and automatic error reset? Or does it have other special uses?...
1. Common impedance interference of ground wire
The ground wire on the circuit diagram represents the zero potential in the circuit and is used as a common reference point for other points in the circ...
Driven by the rapid development of new energy vehicles in China, the compound growth rate of the domestic power battery industry has exceeded 150% in the past five years. After experiencing the marke...[Details]
The global demand for lithium batteries has increased with the continuous expansion of application areas. At present, China is the second largest lithium battery producer after Japan. The production ...[Details]
This program is a program that uses a 51 single-chip microcomputer to adjust the speed of a DC motor. Of course, it can also be used to adjust the brightness of an LED light, using timer 2.
#incl...[Details]
I am just starting to learn 51 interrupts, timers, serial ports, etc. I encountered many bottlenecks, such as how to send the value of the variable through the serial port (just add 0x30). I share th...[Details]
On February 17, according to GSMArena, Samsung will officially start selling the Galaxy S22 series flagship overseas on February 25. However, some users received the Samsung Galaxy S22 on Febr...[Details]
As high-tech technology is gradually integrated into traditional agricultural and sideline industries, greenhouse cultivation has become a way to produce off-season crops. This paper introduces the d...[Details]
introduction
Automobile single-chip microcomputer teaching experiments usually require a lot of auxiliary equipment such as signal generators and oscilloscopes, which not only brings a lot of ...[Details]
In the past, we often had to use wired headphones to listen to music, which was sometimes cumbersome and inconvenient. As a line in a movie goes, "I had no choice before, but now I want to be a fashi...[Details]
For a mobile phone manufacturer, the flagship model often represents the consumer's first impression of its brand, the high-end model is more like the facade of the entire brand, and the one th...[Details]
According to foreign media reports, Apple said it will produce its flagship iPhone 12 smartphone in India for local customers. "Apple is committed to making the best products and services in the wor...[Details]
In the past 30 years, major electronic component manufacturers in the world have launched their own unique single-chip microcomputer products. Among the flourishing single-chip microcomputer famili...[Details]
The power grid often interferes with or damages computers and precision instruments, mainly in the following aspects:
1. Power surges: refers to the output voltage effective value higher than t...[Details]
Inertial measurement unit (IMU) sensors, which use accelerometers and gyroscopes, can help reduce safety risks in self-driving cars.
Autonomous driving is the future trend of the automot...[Details]
Lithium-air batteries (LABs) are one of many avenues for improving current energy storage technologies. These and other metal-air batteries have attracted researchers' attention due to their potentia...[Details]