PD - 97155
PDP TRENCH IGBT
Features
l
Advanced Trench IGBT Technology
l
Optimized for Sustain and Energy Recovery
circuits in PDP applications
TM
)
l
Low V
CE(on)
and Energy per Pulse (E
PULSE
for improved panel efficiency
l
High repetitive peak current capability
l
Lead Free package
IRG7S319UPbF
Key Parameters
330
1.26
170
150
V
V
A
°C
V
CE
min
V
CE(ON)
typ. @ I
C
= 20A
I
RP
max @ T
C
= 25°C
T
J
max
C
G
E
G
C
E
D
2
Pak
IRG7S319UPbF
n-channel
G
Gate
C
Collector
E
Emitter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low V
CE(on)
and low E
PULSETM
rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Absolute Maximum Ratings
Parameter
V
GE
I
C
@ T
C
= 25°C
I
C
@ T
C
= 100°C
I
RP
@ T
C
= 25°C
P
D
@T
C
= 25°C
P
D
@T
C
= 100°C
T
J
T
STG
Gate-to-Emitter Voltage
Continuous Collector Current, V
GE
@ 15V
Continuous Collector, V
GE
@ 15V
Repetitive Peak Current
Power Dissipation
Power Dissipation
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Soldering Temperature for 10 seconds
300
Max.
±30
45
20
170
96
38
0.77
-40 to + 150
Units
V
A
W
W/°C
°C
c
Thermal Resistance
R
θJC
Junction-to-Case
d
Parameter
Typ.
–––
Max.
1.3
Units
°C/W
www.irf.com
1
10/2/09
IRG7S319UPbF
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter
BV
CES
ΔΒV
CES
/ΔT
J
Collector-to-Emitter Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Min. Typ. Max. Units
330
–––
–––
–––
–––
0.38
1.26
1.34
1.65
–––
–––
–––
2.02
2.79
1.39
–––
-8.8
1.0
50
–––
125
–––
–––
55
38
13
16
22
81
105
16
25
95
203
–––
854
1083
–––
–––
1.43
–––
–––
–––
–––
–––
4.7
20
200
–––
100
-100
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
ns
μJ
ns
ns
S
nC
nA
μA
V
––– mV/°C
V
V
Conditions
V
GE
= 0V, I
CE
= 250μA
V/°C Reference to 25°C, I
CE
= 1mA
V
GE
= 15V, I
CE
= 20A
V
GE
= 15V, I
CE
V
GE
= 15V, I
CE
V
GE
= 15V, I
CE
V
GE
= 15V, I
CE
V
CE(on)
Static Collector-to-Emitter Voltage
V
GE
= 15V, I
CE
= 25A, T
J
= 150°C
V
CE
= V
GE
, I
CE
= 1.3mA
V
CE
= 330V, V
GE
= 0V
e
= 25A
e
= 45A
e
= 70A
e
= 120A
e
e
V
GE(th)
ΔV
GE(th)
/ΔT
J
I
CES
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Collector-to-Emitter Leakage Current
2.2
–––
–––
V
CE
= 330V, V
GE
= 0V, T
J
= 125°C
V
CE
= 330V, V
GE
= 0V, T
J
= 150°C
V
GE
= 30V
V
GE
= -30V
V
CE
= 25V, I
CE
= 25A
V
CE
= 200V, I
C
= 25A, V
GE
= 15V
I
C
= 25A, V
CC
= 196V
R
G
= 10Ω, L=200μH
T
J
= 25°C
I
C
= 25A, V
CC
= 196V
R
G
= 10Ω, L=200μH
T
J
= 150°C
V
CC
= 240V, V
GE
= 15V, R
G
= 5.1Ω
L = 220nH, C= 0.40μF, V
GE
= 15V
V
CC
= 240V, R
G
= 5.1Ω, T
J
= 25°C
L = 220nH, C= 0.40μF, V
GE
= 15V
I
GES
g
fe
Q
g
Q
gc
t
d(on)
t
r
t
d(off)
t
f
t
d(on)
t
r
t
d(off)
t
f
t
st
E
PULSE
Gate-to-Emitter Forward Leakage
Gate-to-Emitter Reverse Leakage
Forward Transconductance
Total Gate Charge
Gate-to-Collector Charge
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Shoot Through Blocking Time
Energy per Pulse
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
100
–––
–––
e
Human Body Model
ESD
Machine Model
C
ies
C
oes
C
res
L
C
L
E
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Internal Collector Inductance
Internal Emitter Inductance
–––
–––
–––
–––
–––
V
CC
= 240V, R
G
= 5.1Ω, T
J
= 100°C
Class 1C
(Per JEDEC standard JESD22-A114)
Class B
(Per EIA/JEDEC standard EIA/JESD22-A115)
V
GE
= 0V
1098 –––
56
32
4.5
7.5
–––
–––
–––
nH
–––
pF
V
CE
= 30V
ƒ = 1.0MHz
Between lead,
6mm (0.25in.)
from package
and center of die contact
Notes:
Half sine wave with duty cycle = 0.05, ton=2μsec.
R
θ
is measured at
T
J
of approximately 90°C.
Pulse width
≤
400μs; duty cycle
≤
2%.
2
www.irf.com
IRG7S319UPbF
200
VGE = 18V
VGE = 15V
VGE = 12V
200
160
160
VGE = 18V
VGE = 15V
ICE (A)
ICE (A)
120
80
VGE = 10V
VGE = 8.0V
VGE = 6.0V
120
VGE = 12V
VGE = 10V
VGE = 8.0V
80
VGE = 6.0V
40
40
0
0
2
4
6
VCE (V)
8
10
0
0
2
4
6
VCE (V)
8
10
Fig 1. Typical Output Characteristics @ 25°C
200
Fig 2. Typical Output Characteristics @ 75°C
200
160
VGE = 18V
ICE (A)
160
VGE = 18V
ICE (A)
120
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
120
80
80
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
40
40
0
0
2
4
6
VCE (V)
8
10
0
0
2
4
6
VCE (V)
8
10
Fig 3. Typical Output Characteristics @ 125°C
200
Fig 4. Typical Output Characteristics @ 150°C
10
IC = 25A
160
8
80
T J = 25°C
T J = 150°C
VCE (V)
ICE (A)
120
6
TJ = 25°C
TJ = 150°C
4
40
2
0
2
4
6
8
10
12
VGE (V)
0
0
5
10
V GE (V)
15
20
Fig 5. Typical Transfer Characteristics
Fig 6. V
CE(ON)
vs. Gate Voltage
www.irf.com
3
IRG7S319UPbF
50
200
Repetitive Peak Current (A)
40
160
30
IC (A)
120
20
80
ton= 2μs
Duty cycle = 0.05
Half Sine Wave
10
40
0
0
25
50
75
TC (°C)
100
125
150
0
25
50
75
100
125
150
Case Temperature (°C)
Fig 7. Maximum Collector Current vs. Case Temperature
1100
VCC = 240V
1000
L = 220nH
C = variable
100°C
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
1400
1300
L = 220nH
C = 0.4μF
100°C
Energy per Pulse (μJ)
Energy per Pulse (μJ)
900
800
25°C
700
600
500
160
170
180
190
200
210
220
230
1200
1100
1000
900
800
700
200
210
220
230
25°C
240
250
260
270
IC, Peak Collector Current (A)
VCC, Collector-to-Supply Voltage (V)
Fig 9. Typical E
PULSE
vs. Collector Current
1200
VCC = 240V
1000
L = 220nH
t = 1μs half sine
C= 0.4μF
Fig 10. Typical E
PULSE
vs. Collector-to-Supply Voltage
100
100
μs
10
μs
Energy per Pulse (μJ)
10
IC (A)
800
C= 0.3μF
1ms
1
600
C= 0.2μF
400
25
50
75
100
125
150
TJ, Temperature (ºC)
0.1
1
10
V CE (V)
100
1000
Fig 11. E
PULSE
vs. Temperature
Fig 12. Forrward Bias Safe Operating Area
4
www.irf.com
IRG7S319UPbF
10000
20
VGE, Gate-to-Source Voltage (V)
ID= 25A
VDS = 240V
VDS = 200V
VDS = 60V
16
Capacitance (pF)
1000
Cies
12
8
100
Coes
Cres
10
0
100
200
4
0
0
10
20
30
40
QG Total Gate Charge (nC)
VCE (V)
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
10
Thermal Response ( ZthJC )
1
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
SINGLE PULSE
( THERMAL RESPONSE )
τ
J
τ
J
τ
1
τ
1
R
1
R
1
τ
2
R
2
R
2
R
3
R
3
τ
3
τ
C
τ
τ
3
Ri (°C/W)
τι
(sec)
τ
2
0.01
Ci=
τi/Ri
Ci=
τi/Ri
0.459659 0.000349
0.55727 0.001537
0.283959 0.00944
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
0.001
1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5