To learn more about ON Semiconductor, please visit our website at
www.onsemi.com
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers
will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor
product management systems do not have the ability to manage part nomenclature that utilizes an underscore
(_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain
device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated
device numbers. The most current and up-to-date ordering information can be found at
www.onsemi.com.
Please
email any questions regarding the system integration to
Fairchild_questions@onsemi.com.
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number
of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right
to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON
Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON
Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA
Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out
of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor
is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
FDN306P
December 2001
FDN306P
P-Channel 1.8V Specified PowerTrench
MOSFET
General Description
This P-Channel 1.8V specified MOSFET uses
Fairchild’s advanced low voltage PowerTrench process.
It has been optimized for battery power management
applications.
Features
•
–2.6 A, –12 V.
R
DS(ON)
= 40 mΩ @ V
GS
= –4.5 V
R
DS(ON)
= 50 mΩ @ V
GS
= –2.5 V
R
DS(ON)
= 80 mΩ @ V
GS
= –1.8 V
Applications
•
Battery management
•
Load switch
•
Battery protection
•
Fast switching speed
•
High performance trench technology for extremely
low R
DS(ON)
•
SuperSOT
TM
-3 provides low R
DS(ON)
and 30% higher
power handling capability than SOT23 in the same
footprint
D
D
S
SuperSOT -3
TM
G
T
A
=25
o
C unless otherwise noted
G
S
Absolute Maximum Ratings
Symbol
V
DSS
V
GSS
I
D
P
D
T
J
, T
STG
Drain-Source Voltage
Gate-Source Voltage
Drain Current
– Continuous
– Pulsed
Maximum Power Dissipation
Parameter
Ratings
–12
±8
(Note 1a)
Units
V
V
A
W
°C
–
2.6
–
10
0.5
0.46
–55 to +150
(Note 1a)
(Note 1b)
Operating and Storage Junction Temperature Range
Thermal Characteristics
R
θJA
R
θJC
Thermal Resistance, Junction-to-Ambient
Thermal Resistance, Junction-to-Case
(Note 1a)
(Note 1)
250
75
°C/W
°C/W
Package Marking and Ordering Information
Device Marking
306
Device
FDN306P
Reel Size
7’’
Tape width
8mm
Quantity
3000 units
2001
Fairchild Semiconductor Corporation
FDN306P Rev D (W)
FDN306P
Electrical Characteristics
Symbol
BV
DSS
∆BV
DSS
∆T
J
I
DSS
I
GSSF
I
GSSR
V
GS(th)
∆V
GS(th)
∆T
J
R
DS(on)
T
A
= 25°C unless otherwise noted
Parameter
Drain–Source Breakdown Voltage
Breakdown Voltage Temperature
Coefficient
Zero Gate Voltage Drain Current
Gate–Body Leakage, Forward
Gate–Body Leakage, Reverse
(Note 2)
Test Conditions
V
GS
= 0 V,
I
D
= –250
µA
Min
–12
Typ
Max Units
V
Off Characteristics
I
D
= –250
µA,Referenced
to 25°C
V
DS
= –10 V,
V
GS
= 8 V,
V
GS
= –8 V,
V
GS
= 0 V
V
DS
= 0 V
V
DS
= 0 V
I
D
= –250
µA
–0.4
–0.6
2.5
30
39
54
40
–10
10
1138
454
302
11
10
38
35
V
DS
= –6 V,
V
GS
= –4.5 V
I
D
= –2.6 A,
12
2
3
–0.42
(Note 2)
–3
–1
100
–100
–1.5
mV/°C
µA
nA
nA
V
mV/°C
40
50
80
54
mΩ
On Characteristics
Gate Threshold Voltage
Gate Threshold Voltage
Temperature Coefficient
Static Drain–Source
On–Resistance
V
DS
= V
GS
,
I
D
= –250
µA,Referenced
to 25°C
V
GS
= –4.5 V, I
D
= –2.6 A
V
GS
= –2.5 V, I
D
= –2.3 A
I
D
= –1.8 A
V
GS
= –1.8V,
V
GS
= –4.5 V, I
D
= –2.6A , T
J
=125°C
V
GS
= –4.5 V, V
DS
= –5 V
V
DS
= –5 V,
I
D
= –2.6 A
I
D(on)
g
FS
C
iss
C
oss
C
rss
t
d(on)
t
r
t
d(off)
t
f
Q
g
Q
gs
Q
gd
I
S
V
SD
On–State Drain Current
Forward Transconductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
(Note 2)
A
S
pF
pF
pF
20
20
61
56
17
ns
ns
ns
ns
nC
nC
nC
A
V
Dynamic Characteristics
V
DS
= –6 V,
f = 1.0 MHz
V
GS
= 0 V,
Switching Characteristics
Turn–On Delay Time
Turn–On Rise Time
Turn–Off Delay Time
Turn–Off Fall Time
Total Gate Charge
Gate–Source Charge
Gate–Drain Charge
V
DD
= –6 V,
V
GS
= –4.5 V,
I
D
= –1 A,
R
GEN
= 6
Ω
Drain–Source Diode Characteristics and Maximum Ratings
Maximum Continuous Drain–Source Diode Forward Current
Drain–Source Diode Forward
Voltage
V
GS
= 0 V,
I
S
= –0.42
–0.6
–1.2
Notes:
1.
R
θJA
is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of
the drain pins. R
θJC
is guaranteed by design while R
θCA
is determined by the user's board design.
a) 250°C/W when mounted on a
0.02 in
2
pad of 2 oz. copper.
b) 270°C/W when mounted on a
minimum pad.
Scale 1 : 1 on letter size paper
2.
Pulse Test: Pulse Width
≤
300
µs,
Duty Cycle
≤
2.0%
FDN306P Rev D W)
FDN306P
Typical Characteristics
20
V
GS
= -4.5V
-3.0V
2.2
R
DS(ON)
, NORMALIZED
DRAIN-SOURCE ON-RESISTANCE
-2.5V
-2.0V
2
1.8
-I
D
, DRAIN CURRENT (A)
15
V
GS
= -1.8V
-2.0V
-1.8V
10
1.6
1.4
1.2
1
0.8
-2.5V
-3.0V
-3.5V
-4.5V
5
-1.5V
0
0
1
2
3
4
-V
DS
, DRAIN TO SOURCE VOLTAGE (V)
0
5
10
-I
D
, DIRAIN CURRENT (A)
15
20
Figure 1. On-Region Characteristics.
Figure 2. On-Resistance Variation with
Drain Current and Gate Voltage.
0.12
1.4
R
DS(ON)
, NORMALIZED
DRAIN-SOURCE ON-RESISTANCE
1.3
1.2
1.1
1
0.9
0.8
-50
-25
0
25
50
75
100
o
R
DS(ON)
, ON-RESISTANCE (OHM)
I
D
= -2.6A
V
GS
= -4.5V
I
D
= -1.3A
0.1
0.08
0.06
T
A
= 125
o
C
0.04
T
A
= 25
o
C
0.02
1
2
3
4
5
125
150
T
J
, JUNCTION TEMPERATURE ( C)
-V
GS
, GATE TO SOURCE VOLTAGE (V)
Figure 3. On-Resistance Variation with
Temperature.
20
V
DS
= -5V
25 C
-125
o
C
o
Figure 4. On-Resistance Variation with
Gate-to-Source Voltage.
10
V
GS
= 0V
1
-I
S
, REVERSE DRAIN CURRENT (A)
T
A
= -55
o
C
-I
D
, DRAIN CURRENT (A)
15
T
A
= 125
o
C
25
o
C
-55
o
C
0.1
10
0.01
5
0.001
0
0.5
1
1.5
2
2.5
0.0001
0
0.2
0.4
0.6
0.8
1
1.2
-V
GS
, GATE TO SOURCE VOLTAGE (V)
-V
SD
, BODY DIODE FORWARD VOLTAGE (V)
Figure 5. Transfer Characteristics.
Figure 6. Body Diode Forward Voltage Variation
with Source Current and Temperature.
FDN306P Rev D W)
FDN306P
Typical Characteristics
5
-V
GS
, GATE-SOURCE VOLTAGE (V)
I
D
= -2.6A
4
V
DS
= -4V
2000
-6V
f = 1 MHz
V
GS
= 0 V
1600
CAPACITANCE (pF)
-8V
C
ISS
3
1200
2
800
C
OSS
1
400
C
RSS
0
0
3
6
9
12
15
0
0
3
6
9
12
-V
DS
, DRAIN TO SOURCE VOLTAGE (V)
Q
g
, GATE CHARGE (nC)
Figure 7. Gate Charge Characteristics.
100
30
Figure 8. Capacitance Characteristics.
P(pk), PEAK TRANSIENT POWER (W)
-I
D
, DRAIN CURRENT (A)
R
DS(ON)
LIMIT
10
1ms
1
V
GS
= -4.5V
SINGLE PULSE
R
θJA
= 270
o
C/W
T
A
= 25
o
C
0.01
0.1
1
10
100
DC
10ms
100ms
1s
100µs
25
20
15
10
5
0
0.001
SINGLE PULSE
R
θJA
= 270°C/W
T
A
= 25°C
0.1
0.01
0.1
1
10
100
-V
DS
, DRAIN-SOURCE VOLTAGE (V)
t
1
, TIME (sec)
Figure 9. Maximum Safe Operating Area.
Figure 10. Single Pulse Maximum
Power Dissipation.
1
r(t), NORMALIZED EFFECTIVE
TRANSIENT THERMAL
RESISTANCE
D = 0.5
0.2
R
θJA
(t) = r(t) * R
θJA
R
θJA
= 270 C/W
P(pk)
t
1
SINGLE PULSE
o
0.1
0.1
0.05
0.02
0.01
0.01
t
2
T
J
- T
A
= P * R
θJA
(t)
Duty Cycle, D = t
1
/ t
2
0.001
0.0001
0.001
0.01
0.1
t
1
, TIME (sec)
1
10
100
1000
Figure 11. Transient Thermal Response Curve.
Thermal characterization performed using the conditions described in Note 1b.
Transient thermal response will change depending on the circuit board design.