Off-line systems with auto-ranging or PFC front ends, industrial and process control,
distributed power, medical, ATE, communications, defense and aerospace.
For details on proper operation please refer to the:
Design Guide & Applications Manual for Maxi, Mini, Micro Family.
Absolute Maximum Ratings
Parameter
+IN to –IN voltage
PC to –IN voltage
PR to –IN voltage
SC to -OUT voltage
-Sense to -OUT voltage
Isolation voltage
IN to OUT
IN to base
OUT to base
Operating Temperature
Storage Temperature
Pin soldering temperature
Mounting torque
Rating
-0.5 to +410
-0.5 to +7.0
-0.5 to +7.0
-0.5 to +1.5
1.0
3000
1500
500
-55 to +100
-65 to +125
500 (260)
750 (390)
5 (0.57)
Unit
V
DC
V
DC
V
DC
V
DC
V
DC
V
RMS
V
RMS
V
RMS
°C
°C
°F (°C)
°F (°C)
in-lbs (N-m)
Test voltage
Test voltage
Test voltage
M-Grade
M-Grade
<5 sec; wave solder
<7 sec; hand solder
6 each
Notes
Product Overview
These DC-DC converter modules use advanced
power processing, control and packaging
technologies to provide the performance,
flexibility, reliability and cost effectiveness of a
mature power component.
High frequency ZCS/ZVS switching provides
high power density with low noise and
high efficiency.
Part Numbering
e.g. V300B12T250BL2
300B
Product Grade Temperatures (°C)
Grade
Operating
Storage
E
=
- 10 to +100
- 20 to +125
C
=
- 20 to +100
- 40 to +125
T
=
- 40 to +100
- 40 to +125
H
=
- 40 to +100
- 55 to +125
M
=
- 55 to +100
- 65 to +125
B
Output Power
P
OUT
100W
100W, 150W
150W, 200W
200W
150W, 250W
150W, 250W
150W, 250W
150W, 250W
150W, 250W
150W, 250W
Product Type
V
= Standard
S
= Enhanced
efficiency
(avail.
≤12
V
OUT
only)
Output Voltage
2
= 2V
3V 3
= 3.3V
5
= 5V
8
= 8V
12
= 12V
15
= 15V
24
= 24V
28
= 28V
36
= 36V
48
= 48V
V
OUT
2V
3.3V
5V
8V
12V
15V
24V
28V
36V
48V
Finish
Pin Style
Tin/Lead
Blank:
Short
Tin/Lead
L:
Long
Gold
S:
Short ModuMate
Gold
N:
Long ModuMate
Gold
F:
Short RoHS
Gold
G:
Long RoHS
Gold
K:
Extra Long RoHS
Baseplate
Blank:
Slotted
2:
Threaded
3:
Through-hole
300V Mini Family
Page 1 of 14
Rev 9.6
06/2017
vicorpower.com
800 927.9474
300V Input
Module Family Electrical Characteristics
Electrical characteristics apply over the full operating range of input voltage, output load (resistive) and baseplate temperature, unless otherwise specified.
All temperatures refer to the operating temperature at the center of the baseplate.
MODULE INPUT SPECIFICATIONS
Parameter
Operating input voltage
Input surge withstand
Undervoltage turn-on
Undervoltage turn-off
Overvoltage turn-off/on
Disabled input current
147.4
378.7
174.6
152.8
393.8
412.6
1.2
Min
180
Typ
300
Max
375
400
178.2
Unit
V
DC
V
DC
V
DC
V
DC
V
DC
mA
PC pin low
<100ms
Notes
MODULE OUTPUT SPECIFICATIONS
Parameter
Output voltage setpoint
Line regulation
Temperature regulation
Power sharing accuracy
Programming range
10
±0.02
±0.002
±2
Min
Typ
Max
±1
±0.20
±0.005
±5
110
Unit
%
%
% / °C
%
%
Notes
Of nominal output voltage. Nominal input; full load; 25°C
Low line to high line; full load
Over operating temperature range
10 to 100% of full load
Of nominal output voltage. For trimming below 90%
of nominal, a minimum load of 10% of maximum
rated power may be required.
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
+OUT to –OUT, +Sense to –OUT — Absolute Maximum Ratings
2V
3.3V
5V
8V
12V
15V
24V
28V
36V
48V
-0.5 to 3.1
-0.5 to 4.7
-0.5 to 7.0
-0.5 to 10.9
-0.5 to 16.1
-0.5 to 20.0
-0.5 to 31.7
-0.5 to 36.9
-0.5 to 47.1
-0.5 to 62.9
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
Note:
The permissible load current must never be exceeded during normal, abnormal or test conditions. For additional output related application
information, please refer to output connections on page 9.
THERMAL RESISTANCE AND CAPACITY
Parameter
Baseplate to sink; flat, greased surface
Baseplate to sink; thermal pad (P/N 20264)
Baseplate to ambient
Baseplate to ambient; 1000LFM
Thermal capacity
Min
Typ
0.16
0.14
8.0
1.9
83
Max
Unit
°C/Watt
°C/Watt
°C/Watt
°C/Watt
Watt-sec/°C
300V Mini Family
Page 2 of 14
Rev 9.6
06/2017
vicorpower.com
800 927.9474
300V Input
Module Family Electrical Characteristics (Cont.)
MODULE CONTROL SPECIFICATIONS
Parameter
Min
Typ
Max
Unit
Notes
Primary Side (PC = Primary Control; PR = Parallel)
PC bias voltage
current limit
PC module disable
PC module enable delay
PC module alarm
PC resistance
PR emitter amplitude
PR emitter current
PR receiver impedance
PR receiver threshold
PR drive capability
Secondary Side (SC = Secondary Control)
SC bandgap voltage
SC resistance
SC capacitance
SC module alarm
1.21
990
1.23
1000
0.033
0
1.25
1010
V
DC
Ω
µF
V
DC
With open trim; referenced to –Sense. See Fig. 7
Referenced to –Sense
0.9
5.7
150
375
2.4
500
2.5
625
2.6
12
1.0
5.9
5.50
1.5
2.3
5.75
2.1
2.6
4
6.00
3.0
2.9
7
0.5
1.1
6.1
V
DC
mA
V
DC
ms
Vavg
MΩ
Volts
mA
Ω
Volts
modules
25°C
Minimum pulse width: 20ns
Without PR buffer amplifier
UV, OV, OT, module fault. See Figs. 3 and 5
See Fig. 3, converter off or fault mode
PR load >30Ω, <30pF
PC current = 1.0mA
PC voltage = 5.5V
During normal operation
Switch must be able to sink
≥4mA.
See Fig. 2
MODULE GENERAL SPECIFICATIONS
Parameter
Remote sense (total drop)
Isolation test voltage (IN to OUT)*
Isolation test voltage (IN to base)*
Isolation test voltage (OUT to base)*
Isolation resistance
Weight (E, C, T grade)
Weight (H, M grade)
3.1
(89.3)
3.5
(99.6)
100
3000
1500
500
10
3.5
(100.3)
3.9
(110.6)
115
cURus, cTÜVus, CE
3.9
(111.3)
4.3
(121.6)
Min
Typ
Max
0.5
Unit
V
DC
Vrms
Vrms
Vrms
MΩ
ounces
(grams)
ounces
(grams)
°C
See Figs. 3 and 5. Do not operate coverter >100°C.
UL60950-1, EN60950-1, CSA60950-1, IEC60950-1.
With appropriate fuse in series with the +Input
Notes
0.25V per leg (sense leads must be connected to
respective, output terminals)
Complies with reinforced insulation requirements
Complies with basic insulation requirements
Complies with operational insulation requirements
IN to OUT, IN to baseplate, OUT to baseplate
Temperature limiting
Agency approvals
* Isolation test voltage, 1 minute or less.
Note:
Specifications are subject to change without notice.
300V Mini Family
Page 3 of 14
Rev 9.6
06/2017
vicorpower.com
800 927.9474
300V Input
MODULE SPECIFIC OPERATING SPECIFICATIONS
2
V
OUT
, 100W (e.g. S300B2C100BL, V300B2C100BL)
Parameter
Efficiency
S300B2C100BL (enhanced efficiency)
V300B2C100BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
81.0
73
2.7
Typ
83.0
74
120
2.8
3.8
±0.02
57.5
57.5
Max
Unit
%
150
2.9
4
±0.2
50
70
70
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
51
35
3.3
V
OUT
, 150W (e.g. S300B3V3C150BL, V300B3V3C150BL)
Parameter
Efficiency
S300B3V3C150BL (enhanced efficiency)
V300B3V3C150BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
80.5
79.5
4.14
Typ
84.5
80.6
160
4.3
4.6
±0.02
52.3
52.3
Max
Unit
%
200
4.46
6.9
±0.2
45.45
63.7
63.7
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
46.4
31.8
3.3
V
OUT
, 100W (e.g. S300B3V3C100BL, V300B3V3C100BL)
Parameter
Efficiency
S300B3V3C100BL (enhanced efficiency)
V300B3V3C100BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
80.8
79.5
4.14
Typ
84.5
80.8
84
4.3
4.5
±0.02
34.8
34.8
Max
Unit
%
105
4.46
4.9
±0.2
30.30
41
41
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
30.9
21.2
5
V
OUT
, 200W (e.g. S300B5C200BL, V300B5C200BL)
Parameter
Efficiency
S300B5C200BL (enhanced efficiency)
V300B5C200BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
85.2
84.0
6.03
Typ
87
85.2
80
6.25
4.2
±0.02
46
46
Max
Unit
%
100
6.47
6.3
±0.2
40
52
52
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
40.8
28
300V Mini Family
Page 4 of 14
Rev 9.6
06/2017
vicorpower.com
800 927.9474
300V Input
MODULE SPECIFIC OPERATING SPECIFICATIONS (CONT.)
5
V
OUT
, 150W (e.g. S300B5C150BL, V300B5C150BL)
Parameter
Efficiency
S300B5C150BL (enhanced efficiency)
V300B5C150BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
83.8
80.9
6.03
Typ
86.5
83
198
6.25
6
±0.02
34.5
34.5
Max
Unit
%
248
6.47
9.4
±0.2
30
40.5
40.5
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
30.6
21
8
V
OUT
, 200W (e.g. S300B8C200BL, V300B8C200BL)
Parameter
Efficiency
S300B8C200BL (enhanced efficiency)
V300B8C200BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
84.5
83.2
9.36
Typ
86.5
84.4
280
9.7
5.5
±0.02
28.8
28.8
Max
Unit
%
350
10.1
6.5
±0.2
25
33.8
33.8
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
25.5
17.5
12
V
OUT
, 250W (e.g. S300B12C250BL, V300B12C250BL)
Parameter
Efficiency
S300B12C250BL (enhanced efficiency)
V300B12C250BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
87.3
86.3
13.7
Typ
89.0
87.3
150
14.3
4
±0.06
24
24
Max
Unit
%
188
14.9
6
±0.3
20.83
28.1
28.1
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
21.3
14.6
12
V
OUT
, 150W (e.g. S300B12C150BL, V300B12C150BL)
Parameter
Efficiency
S300B12C150BL (enhanced efficiency)
V300B12C150BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
86.3
85.4
13.7
Typ
88.0
86.4
240
14.3
5.7
±0.02
14.4
14.4
Max
Unit
%
300
14.9
7
±0.2
12.5
16.9
16.9
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
The general frequency band of ZigBee is 2.4GHz. This is not strictly 2.400GHz, but several frequency bands near 2.4GHz, because ZigBee uses channel access technology, including time division multiplex...
[size=4]1. I plan to learn with dsp6657, so let's experiment with the serial port first. Find the chip support libraries, path D:\ti\pdk_C6657_1_1_1_4\packages\ti\csl, create a new project[/size] [siz...
I would like to ask all forum friends, when designing the AD9 package, how to round the corners of the surface mount rectangular pad? As shown in the figure below....
[i=s]This post was last edited by tiankai001 on 2018-12-6 16:55[/i] [b][color=#5E7384]This content is originally created by EEWORLD forum user [size=3]tiankai001[/size]. If you need to reprint or use ...
The book "Model-Based Design: MCU" adopts the advanced product development concept - model-based design method, and uses MATLAB R2010b as the software platform. It allows engineers to conduct requirem...
As an intelligent and precise pipeline flow measurement instrument, the electromagnetic flowmeter has many advantages that other types of flow meters do not have, such as being unaffected by changes i...[Details]
On July 17, Farasis Energy was listed on the Science and Technology Innovation Board of the Shanghai Stock Exchange, becoming the first lithium-ion power battery stock for new energy vehicles on the ...[Details]
Before learning about 3U and 5U communication, let's first take a look at what N:N communication is (5U PLC calls this "simple PLC connection"). N:N communication is a very basic communication prot...[Details]
On November 15, the Huzhou Development and Reform Commission issued the Implementation Opinions on the Development of Huzhou's Energy Storage and Hydrogen Energy Industry, which mentioned that by 2...[Details]
Recently, some media reported that the well-known mobile phone ODM manufacturer, Haipai Communication, officially announced its closure of its Longhua Guanlan production base. At the same time, a fac...[Details]
Abstract: This paper introduces an image and position sensing system based on linear array CCD. This system uses C18051F020 microcontroller as the slave computer to drive the CCD and communicate wi...[Details]
I. Overview The previous article talked about: three-channel successive conversion (single, single-channel software triggered), that is, the three channels need three software triggers to complete th...[Details]
An essential component of any electric vehicle (EV) is the battery. The battery must be designed to meet the requirements of the motor and charging system used by the vehicle. This includes physica...[Details]
At present, the automobile industry is undergoing a profound transformation. The strong rise of new energy vehicles has brought unprecedented changes to the automobile industry. Not only that, but ...[Details]
Infineon Technologies’ automotive-grade XENSIV™ MEMS microphones power Cerenx emergency vehicle detection technology, accurately identifying emergency vehicle sirens and giving cars the sense of ...[Details]
1. Background
In modern industrial production, people need to detect and control temperature. Using 51 single-chip microcomputer to control temperature has the advantages of convenient control,...[Details]
1. Classification of diodes
1. According to the semiconductor materials used, it can be divided into germanium diodes (Ge tubes) and silicon diodes (Si tubes).
2. According to their different...[Details]
From March 16 to 17, 2022, in order to ensure the supply and price stability of lithium resource products and promote the healthy development of the new energy vehicle and power battery industries,...[Details]
/**********************************************************************
* File name: main.c/Buttons based on state machine
* Program author: Kevin Chin
* Program version: V1.0
* Compilation date: ...[Details]
The 2021 Lunar New Year is approaching. It is the first Spring Festival after the epidemic. This year, everyone should resume the custom of New Year’s greetings. The New Year is one of the few time...[Details]