DATA SHEET
GDZJ2.0~GDZJ56
AXIAL LEAD ZENER DIODES
VOLTAGE
2.0 to 56 Volts
POWER
500 mWatts
DO-35
Unit: inch (mm)
FEATURES
• 500mW Power Dissipation
• Ideally Suited for Automated Assembly Processes
• Pb free product are available : 99% Sn above can meet Rohs
environment substance directive request
.153(3.9)MAX.
1.02(26.0)MIN.
• Planar Die construction
.020(0.52)TYP.
MECHANICAL DATA
• Case: Molded Glass DO-35
• Terminals: Solderable per MIL-STD-202G, Method 208
• Polarity: See Diagram Below
• Approx. Weight: 0.13 grams
• Mounting Position: Any
• Ordering information: Suffix : “ -35 ” to order DO-35 Package
• Packing information
B
- 2K per Bulk box
T/R - 10K per 13" plastic Reel
T/B - 5K per horiz. tape & Ammo box
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
P ar m et r
a
e
P ow erD i si aton atTam b = 25
s p i
Juncton Tem per t r
i
aue
S t r ge Tem per t r R ange
oa
aue
O
S ym bol
1.02(26.0)MIN.
.079(2.0)MAX.
Val e
u
500
175
- 5 t +175
6 o
U nis
t
mW
O
C
P
TO T
T
J
T
S
C
C
O
Vald pr vi ed t atl ads ata di t nce of10m m fom case ar keptatam bi ntt m per t r .
i o d
h e
sa
r
e
e e
aue
P ar m et r
a
e
Ther alR esi t nce Juncton t A m bi ntA i
m
sa
i o
e
r
For ar Volage atI = 100m A
w d
t
F
S ym bol
M i.
n
-
-
-
-
Typ.
M ax.
0.
3
1
U nis
t
K/ W
m
V
Rt A
h
VF
-
-
-
-
Vald pr vi ed t atl ads ata di t nce of10m m fom case ar keptatam bi ntt m per t r .
i o d
h e
sa
r
e
e e
aue
STAD-NOV.24.2004
PAGE . 1
Typical Characteristics
(T
amb
= 25
°C
unless otherwise specified)
R
thJA
–Therm.Resist.Junction/ Ambient ( K/W)
500
V
Ztn
– Relative
VoltageChange
1.3
V
Ztn
=V
Zt
/V
Z
(25°C)
400
1.2
1.1
1.0
0.9
0.8
–60
TK
VZ
=10 x 10
–4
/K
300
l
l
8 x 10
–4
/K
6 x 10
–4
/K
4 x 10
–4
/K
2 x 10
–4
/K
0
–2 x 10
–4
/K
–4 x 10
–4
/K
200
100
T
L
=constant
0
0
5
10
15
20
l – Lead Length ( mm )
0
60
120
180
240
95 961
1
95 9599
T
j
– Junction Temperature (°C )
Fig. 1 Thermal Resistance vs. Lead Length
Fig. 4 Typical Change of Working Voltage vs. Junction
Temperature
TK
VZ
–Temperature Coefficient of V
Z
( 10
–4
/K)
P –Total Power Dissipation ( mW)
tot
600
500
400
300
200
15
10
5
I
Z
=5mA
0
100
0
–5
0
10
20
30
40
0
40
80
120
160
200
50
95 9602
T
amb
– Ambient T
emperature(°C )
95 9600
V
Z
– Z-Voltage ( V )
Fig. 2 Total Power Dissipation vs. Ambient Temperature
Fig. 5 Temperature Coefficient of Vz vs. Z-Voltage
1000
C
D
– Diode Capacitance ( pF )
200
V
Z
–VoltageChange mV )
(
T
j
=25°C
150
V
R
=2V
T
j
=25°C
100
100
I
Z
=5mA
10
50
1
0
95 9598
0
5
10
15
20
25
95 9601
0
5
10
15
20
25
V
Z
– Z-Voltage ( V )
V
Z
– Z-Voltage ( V )
Fig. 3 Typical Change of Working Voltage under Operating
Conditions at T
amb
=25°C
Fig. 6 Diode Capacitance vs. Z-Voltage
STAD-NOV.24.2004
PAGE . 4
100
I
F
– Forward Current ( mA)
50
40
30
20
10
0
P
tot
=500mW
T
amb
=25°C
T
j
=25°C
1
0.1
0.01
0.001
0
0.2
0.4
0.6
0.8
1.0
I
Z
– Z-Current ( mA)
10
15
95 9607
20
25
30
35
95 9605
V
F
– Forward Voltage ( V )
V
Z
– Z-Voltage ( V )
Fig. 7 Forward Current vs. Forward Voltage
Fig. 9 Z-Current vs. Z-Voltage
I
Z
– Z-Current ( mA)
80
60
40
20
0
0
4
8
12
r
Z
– Differential Z-Resistance (
Ω
)
100
1000
P
tot
=500mW
T
amb
=25°C
I
Z
=1mA
100
5mA
10
10mA
1
T
j
=25°C
0
5
10
15
20
25
V
Z
– Z-Voltage ( V )
16
20
95 9606
95 9604
V
Z
– Z-Voltage ( V )
Fig. 8 Z-Current vs. Z-Voltage
Z
thp
–ThermalResistance PulseCond.(K/W)
for
Fig. 10 Differential Z-Resistance vs. Z-Voltage
1000
t
p
/T=0.5
100
t
p
/T=0.2
Single Pulse
10
t
p
/T=0.1
R
thJA
=300K/W
T=T
jmax
–T
amb
t
p
/T=0.01
t
p
/T=0.02
t
p
/T=0.05
i
ZM
=(–V
Z
+(V
Z2
+4r
zj
x
T/Z
thp
)
1/2
)/(2r
zj
)
1
10
–1
10
0
10
1
t
p
– Pulse Length ( ms )
10
2
95 9603
Fig. 11 Thermal Response
STAD-NOV.24.2004
PAGE . 5