1321 views|2 replies

43

Posts

0

Resources
The OP
 

[XQ138F-EVM development board experience of Star Embedded Electronics] (Original) 7. Hardware Acceleration Sora Vincent Video Source Code [Copy link]

邀请:@xu__changhua   @tagetage   @lcofjp   @通宵敲代码   参与回复

Hi, dear engineers, students and enthusiasts, here I come! Welcome to the mysterious world of Star Embedding! If you are an FPGA engineer or interested in embedded heterogeneous technology, then you are definitely in the right place! Today, we will explore an amazing Star Embedding development board based on TI OMAP-L138 (fixed-point/floating-point DSP C674x+ARM9) + FPGA processor.

To accelerate the text-to-video generation model Sora with FPGA, you first need to understand the complexity and computational requirements of the model. Text-to-video generation models involve deep learning algorithms such as recurrent neural networks (RNN) or Transformer for text processing, and convolutional neural networks (CNN) or generative adversarial networks (GAN) for video generation. It usually involves hardware acceleration of the computationally intensive parts of the model. The text-to-video generation model Sora contains multiple deep learning layers, such as convolutional layers, recurrent layers, attention mechanisms, etc. Due to the parallel processing capabilities of FPGAs, they are particularly suitable for accelerating these computationally intensive tasks.

FPGA acceleration is usually achieved through parallel processing, pipeline design, and optimized memory access patterns. I will use Verilog HDL to write some FPGA accelerator modules for the text-to-video generation model Sora. Please note that due to time constraints, I will only write a few simple model acceleration codes in Verilog language now, and more complex ones will be written when there is an opportunity.

module TextToVideoAccelerator(

  input wire clk,

  input wire reset,

  

  // 文本输入接口input wire [31:0] text_input,

  input wire text_valid,

  output wire text_ready,

  

  // 视频输出接口

  output wire [7:0] video_output,

  output wire video_valid,

  input wire video_ready

);



  // 文本到视频生成模型Sora参数

  parameter TEXT_LENGTH = 1024; // 文本输入长度

  parameter VIDEO_WIDTH = 640;// 视频宽度

  parameter VIDEO_HEIGHT = 480; // 视频高度

  parameter PIXEL_DEPTH = 8;  // 像素深度// 内部状态和控制信号reg [31:0] internal_text_buffer [0:TEXT_LENGTH-1]; // 文本缓冲区reg [7:0] internal_video_frame [0:VIDEO_HEIGHT-1][0:VIDEO_WIDTH-1]; // 视频帧缓冲区reg text_processing; // 文本处理标志reg video_generation; // 视频生成标志reg [31:0] text_index; // 当前处理的文本索引reg [31:0] video_index; // 当前生成的视频像素索引reg text_buffer_full; // 文本缓冲区是否已满reg video_frame_ready; // 视频帧是否已准备好// FPGA内部处理函数

  always @(posedge clk or posedge reset) begin

  if (reset) begin

    // 重置内部状态

    text_processing <= 0;

    video_generation <= 0;

    text_index <= 0;

    video_index <= 0;

    text_buffer_full <= 0;

    video_frame_ready <= 0;

  end else begin

    // 文本输入处理if (text_valid && !text_ready && !text_processing && !text_buffer_full) begin

      // 存储文本输入到缓冲区

      internal_text_buffer[text_index] <= text_input;

      text_index <= text_index + 1;

      if (text_index == TEXT_LENGTH - 1) begin

      // 文本缓冲区已满

      text_buffer_full <= 1;

      text_processing <= 1; // 开始处理文本

      end

      text_ready <= 1; // 通知外部文本已接收

    end elseif (text_ready) begin

      // 清除接收准备信号

      text_ready <= 0;

    end



    // 文本处理与视频生成if (text_processing && text_buffer_full) begin

      // 在这里实现文本到视频生成的算法逻辑// 例如,使用深度学习模型将文本转换为视频帧//我在下面会写for (int y = 0; y < VIDEO_HEIGHT; y = y + 1) begin

      for (int x = 0; x < VIDEO_WIDTH; x = x + 1) begin

      // 文本输入的第一个字节决定视频帧的颜色

      internal_video_frame[y][x] <= internal_text_buffer[0];

      end

    end

    // 算法处理完成,准备输出视频帧// 调用硬件加速模块进行文本到视频帧的转换// 将文本缓冲区的内容“传递”给硬件加速器// TextToVideoHardwareAccelerator 是一个硬件模块// 它接收文本输入并输出视频帧数据// 实际的硬件加速模块设计

    TextToVideoHardwareAccelerator #(

      .TEXT_LENGTH(TEXT_LENGTH),

      .VIDEO_WIDTH(VIDEO_WIDTH),

      .VIDEO_HEIGHT(VIDEO_HEIGHT)

    ) accelerator (

      .clk(clk),

      .reset(reset),

      .text_in(internal_text_buffer),

      .video_frame_out(internal_video_frame)

    );



    // 完成转换后,设置视频帧准备就绪信号

    video_frame_ready <= 1;

  end



    // 视频输出处理if (video_ready && video_frame_ready) begin

      // 输出视频帧的一个像素

      video_output <= internal_video_frame[video_index / VIDEO_WIDTH][video_index % VIDEO_WIDTH];

      video_valid <= 1;

      video_index <= video_index + 1;



      // 检查是否所有像素都已输出if (video_index == (VIDEO_WIDTH * VIDEO_HEIGHT) - 1) begin

      // 重置视频生成标志和索引

      video_generation <= 0;

      video_index <= 0;

      video_frame_ready <= 0;

      end

    end elseif (video_valid) begin

      // 清除视频有效信号

      video_valid <= 0;

    end

  end

  end

endmodule

EEWORLDIMGTK2

This module is just a very simplified model acceleration code, which shows the basic flow of text input, processing, video generation and output. Due to the complexity of the text-to-video generation model Sora (such as the Transformer model in deep learning), the FPGA acceleration implementation code will be quite long and highly specialized, and involve multiple levels of design. Below I will write a simplified, conceptual Verilog text-to-video conversion program to show how to build a module on the FPGA to accelerate part of the processing process:

// 我有一个简化版的基于FPGA的文本编码和帧预测模块

module TextToVideoAccelerator(

  input wire clk, // 主时钟信号input wire rst_n, // 异步复位信号,低电平有效input wire [31:0] text_in, // 输入的文本数据流

  output reg [24:0] video_out_rbg [1919:0][1079:0], // 输出的RGB格式视频帧缓冲区// 其他必要的输入/输出接口,如权重存储器接口、隐藏状态存储器接口等

);



// 内部信号声明和存储器实例化reg [63:0] word_embedding [2047:0]; // 文本词嵌入向量缓存reg [511:0] hidden_state [4095:0]; // 隐藏层状态缓存reg [511:0] frame_prediction; // 当前帧预测结果// 初始化逻辑

initial begin

  // 初始化内部缓存和状态for (int i = 0; i < 2048; i = i + 1) begin

  word_embedding <= 64'b0; // 初始化词嵌入向量为0

  end

  for (int j = 0; j < 4096; j = j + 1) begin

  hidden_state[j] <= 512'b0; // 初始化隐藏状态为0

  end

end



// 文本编码及帧预测流水线

always @(posedge clk or negedge rst_n) begin

  if (~rst_n) begin

  // 复位操作

  frame_prediction <= 512'b0;

  // 清空视频输出缓冲区else begin

  // 此处简化处理步骤:// 1. 对文本进行词嵌入编码// word_embedding <= Embedding(text_in);// 2. 将词嵌入向量送入模型核心进行计算// hidden_state <= ProcessWithTransformer(word_embedding);// 3. 使用隐藏层状态预测下一视频帧// frame_prediction <= PredictFrame(hidden_state);// 将预测的帧颜色值写入视频输出缓冲区// (假设已经完成了量化和颜色空间转换)for (int y = 0; y < 1080; y = y + 1) begin

    for (int x = 0; x < 1920; x = x + 1) begin

      // video_out_rbg[y][x] <= FrameToPixel(frame_prediction);// 这里仅为示意,在此可以加上复杂的加速代码

    end

  end

  end

end



endmodule

EEWORLDIMGTK3

Because such projects usually involve complex deep learning models, a large amount of hardware logic description, and highly customized IP core design. In practical applications, TextEncoder encodes text sequences into a format suitable for neural network models, and then converts the encoded text into video frames through the VideoAccelerator hardware module. VideoAccelerator contains many parallel computing units, memory controllers, and data path structures optimized for specific text-to-video conversion models.
EEWORLDIMGTK4

Based on the above code, I will provide a modified version of the code. This version removes the instantiation of TextToVideoHardwareAccelerator and adds a placeholder for the text to video frame conversion logic. At the same time, in order to ensure the correctness of the timing, the signal feedback of the hardware accelerator processing is added in the actual design:

module TextToVideoAccelerator(

  input wire clk,

  input wire reset,

  

  // 文本输入接口input wire [31:0] text_input,

  input wire text_valid,

  output wire text_ready,

  

  // 视频输出接口

  output wire [7:0] video_output,

  output wire video_valid,

  input wire video_ready

);



  // 假设的文本到视频生成模型参数

  parameter TEXT_LENGTH = 1024; // 文本输入长度

  parameter VIDEO_WIDTH = 640;// 视频宽度

  parameter VIDEO_HEIGHT = 480; // 视频高度

  parameter PIXEL_DEPTH = 8;  // 像素深度// 内部状态和控制信号reg [31:0] internal_text_buffer [0:TEXT_LENGTH-1]; // 文本缓冲区reg [7:0] internal_video_frame [0:VIDEO_HEIGHT-1][0:VIDEO_WIDTH-1]; // 视频帧缓冲区reg text_processing; // 文本处理标志reg video_generation; // 视频生成标志reg [31:0] text_index; // 当前处理的文本索引reg [31:0] video_index; // 当前生成的视频像素索引reg text_buffer_full; // 文本缓冲区是否已满reg video_frame_ready; // 视频帧是否已准备好reg hardware_accelerator_done; // 硬件加速器完成信号(假设)// FPGA内部处理函数

  always @(posedge clk or posedge reset) begin

  if (reset) begin

    // 重置内部状态

    text_processing <= 0;

    video_generation <= 0;

    text_index <= 0;

    video_index <= 0;

    text_buffer_full <= 0;

    video_frame_ready <= 0;

    hardware_accelerator_done <= 0;

  end else begin

    // 文本输入处理if (text_valid && !text_ready && !text_processing && !text_buffer_full) begin

      // 存储文本输入到缓冲区

      internal_text_buffer[text_index] <= text_input;

      text_index <= text_index + 1;

      if (text_index == TEXT_LENGTH - 1) begin

      // 文本缓冲区已满

      text_buffer_full <= 1;

      text_processing <= 1; // 开始处理文本

      end

      text_ready <= 1; // 通知外部文本已接收

    end elseif (text_ready) begin

      // 清除接收准备信号

      text_ready <= 0;

    end



    // 文本处理与视频生成(占位符,调用硬件加速器或实现相应算法)if (text_processing && text_buffer_full) begin

      // 触发硬件加速器并等待其完成// 硬件加速器在一个时钟周期内完成(这在不同算法情况下可能需要多个时钟周期)

      hardware_accelerator_done <= 1;



      // 模拟硬件加速器完成处理后,设置视频帧准备就绪信号if (hardware_accelerator_done) begin

      video_frame_ready <= 1;

      hardware_accelerator_done <= 0;

      end

    end



    // 视频输出处理if (video_ready && video_frame_ready) begin

      // 输出视频帧的一个像素

      video_output <= internal_video_frame[video_index / VIDEO_WIDTH][video_index % VIDEO_WIDTH];

      video_valid <= 1;

      video_index <= video_index + 1;



      // 检查是否所有像素都已输出if (video_index == (VIDEO_WIDTH * VIDEO_HEIGHT) - 1) begin

      // 重置视频生成标志和索引

      video_generation <= 0;

      video_index <= 0;

      video_frame_ready <= 0;

      end

    end elseif (video_valid) begin

      // 清除视频有效信号

      video_valid <= 0;

    end

  end

  end

endmodule



// 在模块外部实例化硬件加速器模块(它是一个现成的IP核)// 注意:此部分未给出具体实现,因为`TextToVideoHardwareAccelerator`的具体行为取决于实际硬件或IP核// 应当根据该硬件加速器提供的接口和功能进行适配// 硬件加速器提供以下接口:// .start(text_in, video_frame_out)// .done()// 并且可以在内部处理时钟域中工作

TextToVideoHardwareAccelerator #(

  .TEXT_LENGTH(TEXT_LENGTH),

  .VIDEO_WIDTH(VIDEO_WIDTH),

  .VIDEO_HEIGHT(VIDEO_HEIGHT)

) accelerator (

  .clk(clk),   // 时钟输入(通常硬件加速器有自己的内部时钟网络,此处仅为示例)

  .reset(reset),  // 复位信号

  .text_in(internal_text_buffer),

  .video_frame_out(internal_video_frame),

  // 在此可以添加其他控制或状态信号

);

EEWORLDIMGTK5


Note that the above code can use a handshake signal to start the hardware accelerator and trigger the video_frame_ready signal through the done signal after the accelerator completes the processing.

Now let me explain the code in my own words:

Module name: TextToVideoAccelerator, it is a super translator that turns text into video instantly! However, it is not a product of the Harry Potter Wizarding World, but is realized through FPGA technology.

input wire clk, // 这是我们的宇宙脉搏,每一跳都代表着时间滴答一声向前。input wire reset, // 哎呀喂,紧急刹车信号,一旦拉响,整个系统得从头再来!// 文本输入接口,就像你给外星人写信的传送门input wire [31:0] text_input, // 一个大大的信息包,里面装着32位的神秘文字信息input wire text_valid, // “嘿,我这里有货真价实的文字哦!”——来自上一级的通知信号

output wire text_ready, // “OK,我已经准备好了,快把你的文本扔过来吧!”——对上级的回答// 视频输出接口,就像电影院的大银幕投放口

output wire [7:0] video_output, // 八位彩色像素,组成视频的最小单位,每一帧画面就靠它们拼接而成

output wire video_valid, // “看这里,现在我给出的是有效像素数据,别眨眼!”input wire video_ready; // “小加速器,我这边准备好接收下一像素了,放马过来吧!”// 高级设定(其实就是程序员偷懒用的魔法数字)

parameter TEXT_LENGTH = 1024; // 文本缓冲区能装1024个字节,够编一部微型小说啦

parameter VIDEO_WIDTH = 640;// 每帧视频宽度640像素,小屏也清晰

parameter VIDEO_HEIGHT = 480; // 高度480像素,经典分辨率带你回味复古风

parameter PIXEL_DEPTH = 8;  // 每个像素有8位深度,足够表现各种颜色斑斓// 内部状态和控制信号,相当于我们设备的“五脏六腑”reg [31:0] internal_text_buffer [...]; // 文本暂存仓库,满满的都是智慧语言reg [7:0] internal_video_frame [...]; // 视频帧临时存放所,一行行像素在等待组装成画面reg text_processing; // 文字正在炼丹炉里进行神奇转换?!reg video_generation; // 视频生成大法已启动?!reg [31:0] text_index; // 当前处理的文字位置指示牌reg [31:0] video_index; // 正在搬运的像素坐标指南针reg text_buffer_full; // 文字仓库是否塞满的警示灯reg video_frame_ready; // 视频帧出炉通知铃铛reg hardware_accelerator_done; // 硬件加速器工作完成的小旗子(幻想中)// FPGA内核操作法则

always @(posedge clk or posedge reset) begin // 当宇宙脉搏跳动一次或有人喊“重来”时...if (reset) begin // 如果重启按钮被按下...// 把所有状态归零,重新开始冒险旅程

  (此处列出一堆状态变量清零语句)



  end else begin // 否则,我们继续正常工作流程...// 文本输入处理部分:像是在做快递分拣if (text_valid && !text_ready && !text_processing && !text_buffer_full) begin

    // 收到有效文本且尚未处理完毕,赶紧放入仓库

    (将text_input存入internal_text_buffer,并更新text_index)

    // 仓库满了?那咱们就开始施展魔法吧

    (判断并设置text_processing标志和text_buffer_full标志)

    text_ready <= 1; // 对外界说:“亲,你的文本我收到了哦!”

  end elseif (text_ready) begin

    // 已经确认收到文本,撤下“待命”信号

    text_ready <= 0;

  end

  

  // 文本转视频的核心区域,此处脑洞大开,实际操作交给硬件加速器if (text_processing && text_buffer_full) begin

    // 幻想一下,我们摇响硬件加速器的小铃铛:“嘿,开工啦!”// (实际上,应使用真实接口触发硬件加速器,并等待其完成)

    hardware_accelerator_done <= 1; // 想象加速器瞬间完成任务// 加速器完成后,仿佛魔术师挥舞魔杖,“叮”一声,视频帧闪亮登场if (hardware_accelerator_done) begin

      video_frame_ready <= 1; // 设置视频帧已完成的信号

      hardware_accelerator_done <= 0; // 重置完成标志,准备下一轮挑战

    end

  end



  // 视频输出环节:像放映员逐帧播放胶片if (video_ready && video_frame_ready) begin

    // 把仓库里的一个像素搬上荧幕

    video_output <= internal_video_frame[计算出的坐标];

    video_valid <= 1; // “注意啦,这一像素很靠谱,可以展示出来!”

    video_index <= video_index + 1; // 移动到下一个像素的位置// 检查是否播完一整帧if (video_index已经指向最后一像素) begin

      // 结束本帧播放,收拾好心情,迎接下一帧

      (重置相关标志和索引)

    end

  end elseif (video_valid) begin

    // 如果当前像素不再有效,赶紧关掉绿灯

    video_valid <= 0;

  end

  end

end



// 实例化那个神乎其技的硬件加速器// 就像请来一位神秘的魔法师助手(假设他/她叫"accelerator")// (此处提供了一些参数和接口连接,但具体怎么调用还得看他/她的说明书)

TextToVideoHardwareAccelerator #(

  .TEXT_LENGTH(TEXT_LENGTH),

  .VIDEO_WIDTH(VIDEO_WIDTH),

  .VIDEO_HEIGHT(VIDEO_HEIGHT)

) accelerator (

  .clk(clk),   // 给魔法师同步心跳

  .reset(reset),  // 发生意外情况,魔法师也需要知道“重新施法”的命令

  .text_in(internal_text_buffer),

  .video_frame_out(internal_video_frame),

  // 在此可以添加其他的控制线和反馈信号,可以续炼上乘秘籍

);

This part needs to be designed based on the specific text-to-video generation model Sora (such as Transformer, etc.) and optimized into a form suitable for FPGA parallel computing, which involves the design and integration of a large number of hardware acceleration modules such as matrix operations, attention mechanisms, and convolution operations. The code of the FPGA accelerated text-to-video generation model involves a lot of hardware design details and deep learning algorithm implementation:


In the above model:

  • The encoder_text_to_hidden_encoder module is responsible for converting the input text sequence into a continuous hidden state vector.
  • The multi_head_attention module performs attention operations based on the hidden states produced by the encoder, which is usually very important in Transformer models.
  • The decoder_hidden_to_video_decoder module uses the encoder hidden states and attention weights to generate video frames.

Each module requires detailed design, including logic synthesis, optimized layout and routing to adapt to the structure of the FPGA, and a large number of parallel computing units, memory hierarchy, and data movement strategies must be considered to effectively accelerate the text-to-video generation process. In addition, other components such as convolutional neural networks (CNNs) need to be connected to generate image frames, which are usually not done directly in the Transformer framework.

At the same time, according to the characteristics of the specific model, more internal state variables and control signals need to be added to coordinate the data flow and pipeline operations at different stages to ensure that the parallel processing capability of the FPGA is maximized while maintaining data correctness.

FPGA acceleration typically involves mapping different parts of the model onto the FPGA and using high-level synthesis tools such as Xilinx Vitis or Intel OpenVINO, followed by compilation and deployment on the FPGA.

Due to the complexity of the text-to-video generation model Sora, the specific implementation of FPGA acceleration will depend on the details of the model, the hardware resources of the FPGA, and the available high-level synthesis tools. Typically, this requires a professional team including hardware engineers, deep learning experts, and FPGA software engineers to jointly design and implement such a solution.

In order to efficiently implement a text-to-video generative model on an FPGA, you need to:

  • Design and implement the core algorithms of the model : including word embedding, self-attention mechanism, decoding, etc. These usually require mapping from the trained neural network model to the hardware structure through high-level synthesis tools.
  • Optimize memory access and data flow : Rationally utilize the FPGA's BRAM resources to store weights and intermediate results, and achieve efficient read and write operations.
  • Use pipeline technology : maximize the use of FPGA parallel processing capabilities and pipeline the calculation process.
  • Quantization and Customized IP Cores : The model is quantized to fit on the FPGA resources and may require the design of customized IP cores to perform specific operations.

In practical applications, the text-to-video generation model Sora involves more complex network structures, such as the Transformer model, and requires processing of large amounts of data and computation. Writing code for FPGA-accelerated text-to-video generation model Sora is a complex process because text-to-video generation models (such as Sora, DALL-E 2, etc.) have large computational requirements. The key to FPGA acceleration is to leverage parallel processing capabilities to optimize compute-intensive tasks. Typically, this involves mapping certain layers of the deep learning model to the logic resources of the FPGA and optimizing data transfer and computation processes.

I'll write here today...

In short, the above content depicts a scene of a fantasy world, in which a hardworking electronic craftsman "FPGA" transforms into a mysterious hardware accelerator, which transforms the incoming text information into a vivid and lively video stream step by step.

I hope the above experience can help you!

Thanks!

Haven't eaten yet
February 18, 2024

This post is from DIY/Open Source Hardware

Latest reply

The technical content shared by the host is very detailed and of great practical value. Thank you for your selfless sharing.   Details Published on 2024-2-28 22:22
 

6609

Posts

0

Resources
2
 

A diligent electronic craftsman "FPGA" transformed into a mysterious hardware accelerator, which gradually transformed the incoming text information into a lively video stream.

This post is from DIY/Open Source Hardware

赞赏

1

查看全部赞赏

 
 

736

Posts

4

Resources
3
 

The technical content shared by the host is very detailed and of great practical value. Thank you for your selfless sharing.

This post is from DIY/Open Source Hardware

赞赏

1

查看全部赞赏

 
 
 

Just looking around
Find a datasheet?

EEWorld Datasheet Technical Support

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号
快速回复 返回顶部 Return list