【AT-START-F425 Review】+ A/D Data Acquisition and Display
[Copy link]
The AT32F425 chip is equipped with a 12-bit 16-channel high-speed ADC with a sampling rate of up to 2Msps.
Combining the serial digital tube with A/D data acquisition can visually view the detection value.
The connection relationship between the serial digital tube and the development board is:
SCL---PC2
SDA---PC3
CS---PC5
The analog signal input channel is ADC_CH5, and the pin it uses is PA5.
The effects of A/D data acquisition and display are shown in Figures 1 to 3 .
Figure 1 Detecting 3.3V voltage
Figure 2 Detecting the suspended state
Figure 3 Detecting GND voltage
The driver program of the serial digital tube is as follows:
void Max7219_Init(void)
{
gpio_init_type gpio_init_struct;
crm_periph_clock_enable(CRM_GPIOC_PERIPH_CLOCK, TRUE);
gpio_default_para_init(&gpio_init_struct);
gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER;
gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL;
gpio_init_struct.gpio_mode = GPIO_MODE_OUTPUT;
gpio_init_struct.gpio_pins = GPIO_PINS_2|GPIO_PINS_3|GPIO_PINS_5;
gpio_init(GPIOC, &gpio_init_struct);
}
void Write_Max7219_byte(unsigned char DATA)
{
unsigned char i;
GPIOC->clr = GPIO_PINS_5;
delay_us(10);
for(i=8;i>=1;i--)
{
GPIOC->clr = GPIO_PINS_2;
if(DATA&0x80) GPIOC->scr = GPIO_PINS_3;
else GPIOC->clr = GPIO_PINS_3;
delay_us(10);
DATA=DATA<<1;
GPIOC->scr = GPIO_PINS_2;
delay_us(10);
}
}
void Write_Max7219(char address,char dat)
{
GPIOC->clr = GPIO_PINS_5;
Write_Max7219_byte(address);
Write_Max7219_byte(dat);
GPIOC->scr = GPIO_PINS_5;
}
void Init_MAX7219(void)
{
Write_Max7219(0x09, 0xff);
Write_Max7219(0x0a, 0x03);
Write_Max7219(0x0b, 0x07);
Write_Max7219(0x0c, 0x01);
Write_Max7219(0x0f, 0x01);
}
The function to set the ADC input pin is:
static void gpio_config(void)
{
gpio_init_type gpio_initstructure;
crm_periph_clock_enable(CRM_GPIOA_PERIPH_CLOCK, TRUE);
gpio_default_para_init(&gpio_initstructure);
gpio_initstructure.gpio_mode = GPIO_MODE_ANALOG;
gpio_initstructure.gpio_pins = GPIO_PINS_4 | GPIO_PINS_5 | GPIO_PINS_6;
gpio_init(GPIOA, &gpio_initstructure);
}
The configuration functions of ADC and DMA are:
static void adc_config(void)
{
adc_base_config_type adc_base_struct;
crm_periph_clock_enable(CRM_ADC1_PERIPH_CLOCK, TRUE);
crm_adc_clock_div_set(CRM_ADC_DIV_6);
nvic_irq_enable(ADC1_IRQn, 0, 0);
adc_combine_mode_select(ADC_INDEPENDENT_MODE);
adc_base_default_para_init(&adc_base_struct);
adc_base_struct.sequence_mode = TRUE;
adc_base_struct.repeat_mode = FALSE;
adc_base_struct.data_align = ADC_RIGHT_ALIGNMENT;
adc_base_struct.ordinary_channel_length = 3;
adc_base_config(ADC1, &adc_base_struct);
adc_ordinary_channel_set(ADC1, ADC_CHANNEL_4, 1, ADC_SAMPLETIME_239_5);
adc_ordinary_channel_set(ADC1, ADC_CHANNEL_5, 2, ADC_SAMPLETIME_239_5);
adc_ordinary_channel_set(ADC1, ADC_CHANNEL_6, 3, ADC_SAMPLETIME_239_5);
adc_ordinary_conversion_trigger_set(ADC1, ADC12_ORDINARY_TRIG_SOFTWARE, TRUE);
adc_dma_mode_enable(ADC1, TRUE);
adc_voltage_monitor_enable(ADC1, ADC_VMONITOR_SINGLE_ORDINARY);
adc_voltage_monitor_threshold_value_set(ADC1, 0xBBB, 0xAAA);
adc_voltage_monitor_single_channel_select(ADC1, ADC_CHANNEL_5);
adc_interrupt_enable(ADC1, ADC_VMOR_INT, TRUE);
adc_enable(ADC1, TRUE);
adc_calibration_init(ADC1);
while(adc_calibration_init_status_get(ADC1));
adc_calibration_start(ADC1);
while(adc_calibration_status_get(ADC1));
}
static void dma_config(void)
{
dma_init_type dma_init_struct;
crm_periph_clock_enable(CRM_DMA1_PERIPH_CLOCK, TRUE);
dma_reset(DMA1_CHANNEL1);
dma_flexible_config(DMA1, FLEX_CHANNEL1, DMA_FLEXIBLE_ADC1);
dma_default_para_init(&dma_init_struct);
dma_init_struct.buffer_size = 3;
dma_init_struct.direction = DMA_DIR_PERIPHERAL_TO_MEMORY;
dma_init_struct.memory_base_addr = (uint32_t)adc1_ordinary_valuetab;
dma_init_struct.memory_data_width = DMA_MEMORY_DATA_WIDTH_HALFWORD;
dma_init_struct.memory_inc_enable = TRUE;
dma_init_struct.peripheral_base_addr = (uint32_t)&(ADC1->odt);
dma_init_struct.peripheral_data_width = DMA_PERIPHERAL_DATA_WIDTH_HALFWORD;
dma_init_struct.peripheral_inc_enable = FALSE;
dma_init_struct.priority = DMA_PRIORITY_HIGH;
dma_init_struct.loop_mode_enable = TRUE;
dma_init(DMA1_CHANNEL1, &dma_init_struct);
dma_channel_enable(DMA1_CHANNEL1, TRUE);
}
The ADC interrupt processing function used is:
void ADC1_IRQHandler(void)
{
if(adc_flag_get(ADC1, ADC_VMOR_FLAG) != RESET)
{
adc_flag_clear(ADC1, ADC_VMOR_FLAG);
vmor_flag_index = 1;
}
}
The main program to achieve the display effect is:
int main(void)
{
char n;
uint16_t m;
__IO uint32_t index = 0;
nvic_priority_group_config(NVIC_PRIORITY_GROUP_4);
system_clock_config();
gpio_config();
dma_config();
adc_config();
Max7219_Init();
Init_MAX7219();
delay_sec(1);
Write_Max7219(0x0f, 0x00);
Write_Max7219(1, 0x0f);
Write_Max7219(2, 0x0f);
Write_Max7219(3, 0x0f);
Write_Max7219(4, 0x0f);
Write_Max7219(5,0x0f);
Write_Max7219(6,0x0f);
Write_Max7219(7,0x0f);
Write_Max7219(8,0x0f);
while(1)
{
delay_sec(1);
if(vmor_flag_index == 1)
{
vmor_flag_index = 0;
m=adc1_ordinary_valuetab[1];
n=m%10;
Write_Max7219(1,n);
n=m%100/10;
Write_Max7219(2,n);
n=m%1000/100;
Write_Max7219(3,n);
n=m/1000;
Write_Max7219(4,n);
}
adc_ordinary_software_trigger_enable(ADC1, TRUE);
}
}
|